8.	Magnitude of K.E. in an	orbit is equal to [BCECE 2005]		(c) Two neutrons and tw	wo protons
	(a) Half of the potential	energy		(d) Four protons and tw	o electrons
	(b) Twice of the potenti	al energy	19.	Which is correct stateme	ent about proton
	(c) One fourth of the po	tential energy		[CPMT 1979; MP PMT 198	5; NCERT 1985; MP PET 1999]
	(d) None of these			(a) Proton is nucleus of	deuterium
9.	The density of neutrons	is of the order[NCERT 1980]		(b) Proton is ionized hyd	drogen molecule
	(a) $10^3 kg/cc$	(b) $10^{6} kg/cc$		(c) Proton is ionized hyd	drogen atom
	(c) $10^9 ka/cc$	(d) $10^{11} kg/cc$		(d) Proton is α -particle	2
10	The discovery of new	(u) to kg/tt	20.	Cathode rays are made u	up of [AMU 1983]
10.	because	tron becomes very late		(a) Positively charged p	articles
		[CPMT 1987; AIIMS 1998]		(b) Negatively charged	particles
	(a) Neutrons are presen	t in nucleus		(c) Neutral particles	
	(b) Neutrons are highly	unstable particles		(d) None of these	
	(c) Neutrons are charge	less	21.	Anode rays were discove	ered by [DPMT 1985]
	(d) Neutrons do not mov	ve		(a) Goldstein	(b) J. Stoney
11.	The fundamental partic	les present in the nucleus		(c) Rutherford	(d) J.J. Thomson
	(a) Alpha particles and	alastrona	22.	The radius of an atom is	s of the order of
	(a) Alpha particles and (b) Neutrone and motor			[AMU 19	982; IIT 1985; MP PMT 1995]
	(b) Neutrons and protor	15		(a) $10^{-10} cm$	(b) 10^{-13} cm
	(c) Neutrons and electr	and protons		(c) 10^{-15} cm	(d) 10^{-8} cm
10	(u) Electronis, neutronis		23.	Neutron possesses	[CPMT 1982]
12.				(a) Positive charge	(b) Negative charge
	(a) 10 ⁸ 1. (a)	$(h) 10^{-8} / (h)$		(c) No charge	(d) All are correct
	(a) $10^{-kg/cc}$	(b) $10^{-kg/cc}$	24.	Neutron is a fundamenta	al particle carrying
	(c) $10^{-9} kg/cc$	(d) $10^{12} kg/cc$	_		[CPMT 1990]
13.	Cathode rays are	[JIPMER 1991; NCERT 1976]		(a) A charge of +1 unit a	and a mass of 1 unit
	(a) Protons	(b) Electrons		(b) No charge and a mas	ss of 1 unit
	(c) Neutrons	(d) α -particles		(c) No charge and no ma	ass
14.	Number of neutron in C	¹² is [BCECE 2005]		(d) A charg of -1 and a r	nass of 1 unit
	(a) 6	(b) 7	25.	Cathode rays have	[CPMT 1982]
	(c) 8	(d) 9		(a) Mass only	(b) Charge only
15.	Heaviest particle is	[DPMT 1983; MP PET 1999]		(c) No mass and charge	(d) Mass and charge
	(a) Meson	(b) Neutron	both		
	(c) Proton	(d) Electron	26.	The size of nucleus is me	easured in
16.	Penetration power of pr	oton is			[EAMCET 1988; CPMT 1994]
		[BHU 1985; CPMT 1982, 88]		(a) amu	(b) Angstrom
	(a) More than electron	(b) Less than electron		(c) Fermi	(d) cm
	(c) More than neutron	(d) None	27.	Which phrase would be	incorrect to use
17.	An elementary particle i	s [CPMT 1973]		$(a) \land molecular of a con$	[AMU (Eligg.) 1999]
	(a) An element present i	in a compound		(a) A molecular of a con	mont
	(b) An atom present in a	an element		(c) An atom of an element	nit int
	(c) A sub-atomic particl	e		(d) None of these	
	(d) A fragment of an ato	om	28	Which one of the follow	ving pairs is not correctly
18.	The nucleus of helium co	ontains	20.	matched	ing pairs is not correctly
		[CPMT 1972; DPMT 1982]			[MP PET 2002]
	(a) Four protons			(a) Rutherford-Proton	
	(b) Four neutrons			(b) J.J. Thomsom-Electro	on

				Struc	ture of atom 49	49	
	(c) J.H. Chadwick-Neut (d) Bohr-Isotope	ron		40.	Which of the following of an electron	g has the same m [4	ass as that AFMC 2002]
29.	Proton was discovered	bv		Г	A KRIC Blooton	(b) Neutron	
	(a) Chadwick	(b) Thom	son	L	(c) Positron	(d) Proton	
	(c) Goldstein	(d) Bohr		41.	What is the ratio of ma	ss of an electron t	the mass
30.	The minimum real cha	rge on any	particle which	1	of a proton		
	can exist is	0 0	1		-	[UP	SEAT 2004]
			[RPMT 2000]		(a) 1 : 2	(b) 1:1	
	(a) 1.6×10^{-19} Coulomb	(b) 1.6×1	0^{-10} Coulomb		(c) 1:1837	(d) 1 : 3	
	(c) 4.8×10^{-10} Coulomb	(d) Zero		At	omic number, Mass n	umber, Atomic	species
;1.	The nature of anode ray	ys depends i	upon		The number of electron	na in an atama af .	
			[MP PET 2004]	1.	is equal to its	is in an atom of a	
	(a) Nature of electrode	(b) Natur	e of residual		(a) Atomic weight	(b) Atomic nur	nber
	gas				(c) Equivalent weight	(d) Electron af	finity
	(c) Nature of discharge	e tube (d)	All the above	2.	The nucleus of the eler	ment having aton	nic number
2.	One would expect proto	on to have v	ery large		25 and atomic weight	55 will contain	
			[Pb. CET 2004]			[CPMT 1986; MP	PMT 1987]
	(a) Ionization potential	(b) Radiu	S		(a) 25 protons and 30	neutrons	
	(c) Charge	(d) Hydra	tion energy		(b) 25 neutrons and 30 (a)) protons	
3.	The mass of a mol of pr	oton and el	ectron is		(c) 55 protons		
	(a) $6.023 \times 10^{23} g$	(b) 1.008 g	g and $0.55mg$	3.	If W is atomic weight	and N is the atom	nic number
	(c) $9.1 \times 10^{-28} kg$	(d) 2gm		U	of an element, then	[CPMT 19	971, 80, 89]
4.	The average distance	of an elect	ron in an atom		(a) Number of $e^{-1} = W$	-N	
1.	from its nucleus is of th	ne order of		ſ	MPPEN Upper of $_0 n^1 = W$	-N	
	(a) $10^6 m$	(b) $10^{-6} m$			(c) Number of $_1H^1 = W$	'-N	
	(c) $10^{-10} m$	(d) 10 ⁻¹⁵ m	n		(d) Number of $_0 n^1 = N$		
5۰	The mass of 1 mole of ele	ectrons is	[Pb. CET 2004]	4.	The total number of	neutrons in dipo	sitive zinc
	(a) $9.1 \times 10^{-28} g$	(b) 1.008 <i>1</i>	ng		ions with mass number	r 70 is [IIT 1979; B	ihar MEE 19
	(2) 0.55		0 -27		(a) 34	(b) 40	
	(c) $0.55 mg$	(d) 9.1×1	0 - g	_	(c) 36	(d) 38	
6.	The ratio of specific ch	arge of a pr	oton and an $lpha$ -	5.	another	g are isoelectroni	c with one
	pur trere 15		[MP PET 1000]			[NCERT 1983; EAM	MCET 1989]
	$(a) 2 \cdot 1$	(h) $1 \cdot 2$			(a) Na^+ and Ne	(b) K^+ and O	
	(a) $2:1$	$(d) 1 \cdot 1$			(c) Ne and O	(d) Na^+ and K	+
7.	Ratio of masses of prote	on and elect	ron is [BHU 1998]	6.	The number of elect	rons in one m	olecule of
	(a) Infinite	(b) 1.8×1	0^{3}			70. MD DMT 1004.1	DMT 1000]
	(c) 1.8	(d) None	of these		(a) 22	(b) 44	(PM1 1999)
8.	Splitting of signals is o	used by	[Ph. PMT 2000]		(c) 66	(d) 88	
	(a) Proton	(h) Neutr	on	7.	Chlorine atom differs	from chloride	ion in the
	(a) Positron	(d) Electro	011		number of		
^	The proton and neutron					[NCERT 1972; MP	PMT 1995]
9.	The proton and neutron	are conect	IVELY CALLED AS		(a) Proton	(b) Neutron	-
	(a) Doutrop	(b) Desite	LWIF FEI 2001]		(c) Electrons	(d) Protons	and
	(a) Deutron	(U) POSIT		elec	LI UIIS		
	(c) Meson	(a) Nucle	011				

8.	CO has same electron	is as or the ion that is	18.	An atom has the electronic configuration of	
	isoelectronic with CO is	[CPMT 1984; IIT 1982;		$1s^2, 2s^2 2p^6$, $3s^2 3p^6 3d^{10}, 4s^2 4p^5$. Its atomic weight	
	EAN	MCET 1990; CBSE PMT 1997]		is 80. Its atomic number and the number of	
	(a) N_2^+	(b) <i>CN</i> ⁻		neutrons in its nucleus shall be	
	(c) O_{2}^{+}	(d) Q_{2}^{-}		[MP PMT 1987]	
•	The mass of an atom is c	constituted mainly by		(a) 35 and 45 (b) 45 and 35	
9.		DBMT 1084 01: AFMC 1000]		(c) 40 and 40 (d) 30 and 50	
	(a) Neutron and neutrin	(b)Neutron and electron	19.	Which of the following particles has more	
	(c) Neutron and proton	(d) Proton and electron		electrons than neutrons	
10.	The atomic number of an	element represents		(a) C (b) F^{-}	
10.	[CPMT 1983: CBSE PMT 1	990: NCERT 1973: AMU 1984]		(c) O^{-2} (d) Al^{+3}	
	(a) Number of neutrons	in the nucleus	20.	Compared with an atom of atomic weight 12 and	
	(b) Number of protons in	n the nucleus		atomic number 6, the atom of atomic weight 13	
	(c) Atomic weight of ele	ment		and atomic number 6 [NCERT 1971]	_
	(d) Valency of element			(a) Contains more neutrons (b)Contains more electrons	5
11.	An atom has 26 electron	s and its atomic weight is		(c) contains more protons (d) is a unreference element	
	56. The number of neut	rons in the nucleus of the	21.	In the nucleus of $_{20}Ca^{\times}$ there are	
	atom will be			[CPMT 1990; EAMCET 1991]	
		[CPMT 1980]		(a) 40 protons and 20 electrons	
	(a) 26	(b) 30		(b) 20 protons and 20 poutrons	
	(c) 36	(d) 56		(c) 20 protons and 20 neutrons (d) 20 protons and 40 neutrons	
12.	The most probable radi	us (in <i>pm</i>) for finding the	~~	$N_{\rm e}^+$ ion is isoplastropic with [ODWI topo]	
	electron in He^+ is	[AIIMS 2005]	22.		
	(a) 0.0	(b) 52.9		(a) Li^{2} (b) Mg^{2}	
	(c) 26.5	(d) 105.8		(c) Ca^{+2} (d) Ba^{+2}	
13.	The number of unpaired	electrons in the Fe^{2+} ion	23.	<i>Ca</i> has atomic no. 20 and atomic weight 40.	
	is			about Ca atom	
		[MP PET 1989; KCET 2000]		[MP PET 1993]	
	(a) 0	(b) 4		(a) The number of electrons is same as the number	
	(c) 6	(d) 3		of neutrons	
14.	A sodium cation has diff	erent number of electrons		(b) The number of nucleons is double of the number of	
	(a) Q^{2-}	(b) <i>F</i> ⁻		(c) The number of protons is half of the number of	
	(c) Li^+	(d) Al^{+3}		neutrons	
15	An atom which has lost α	one electron would be		(d) The number of nucleons is double of the atomic	
-3.		[CPMT 1986]		number	
	(a) Negatively charged		24.	Pick out the isoelectronic structures from the	
	(b) Positively charged			following	
	(c) Electrically neutral			CH_{3}^{+} $H_{3}O^{+}$ NH_{3} CH_{3}^{-} [IIT 1993]	
	(d) Carry double positiv	e charge			
16.	Number of electrons in	the outermost orbit of the		(a) Land II (b) Land IV	
	element of atomic numb	er 15 is [CPMT 1988, 93]	~-	(c) I dilu III (u) II, III dilu IV	
	(a) 1	(b) 3	25.	Number of electrons in $-CONH_2$ is [AMU 1988]	
	(c) 5	(d) 7		(a) 22 (b) 24	
17.	The atomic weight of	an element is double its		(c) 20 (d) 28	
	atomic number. If there	are four electrons in $2p$	26.	The atomic number of an element having the	
	orbital, the element is	[AMU 1983]		valency shell electronic configuration $4s^2 4p^{\circ}$ is[MP PM	Г1
	(a) <i>C</i>	(b) <i>N</i>		(a) 35 (b) 36	
	(c) <i>O</i>	(d) <i>Ca</i>		(c) 37 (d) 38	
			~-	The process stands quality and is based on	

27. The present atomic weight scale is based on

				9	Structure of atom 51	
		[EAMCET 1988; MP PMT 2002]		(a) 30	(b) 32	_
	(a) C ¹²	(b) O^{16}		(c) 34	(d) 33	
	(c) H ¹	(d) C^{13}	38.	The nucleus of the	element $_{21}E^{45}$ contains	
28.	Isoelectronic spec	ies are [EAMCET 1989]		(a) 45 protons and	l 21 neutrons	
	(a) K^+, Cl^-	(b) Na^+, Cl^-		(b) 21 protons and	l 24 neutrons	
		$(d) N_{a}^{+} A_{a}$		(c) 21 protons and	l 45 neutrons	
	(C) Na, Ar	(u) Na ,Ar		(d) 24 protons and	l 21 neutrons	
9.	that of the lightes then it contains	ight of an element is 23 times at element and it has 11 protons,	39.	Neutrons are fou except in	Ind in atoms of all elemen	nts 071
		[EAMCET 1986; AFMC 1989]		(a) Chlorine	(b) Oxygen	,,1
	(a) 11 protons, 23	neutrons, 11 electrons		(c) Argon	(d) Hydrogen	
	(b) 11 protons, 11	neutrons, 11 electrons	40.	The mass number	of an anion, X^{3-} , is 14. If the	ere
(c) 11 protons, 12 neutrons, 11 electrons		-	are ten electrons in the anion, the number of			
	(d) 11 protons, 11 neutrons, 23 electrons			neutrons in the nucleus of atom, X_2 of the		
0.	Which of the fo	ollowing oxides of nitrogen is		element will be	F1]
	isoelectronic with	[CBSE PMT 1990]		(2) 10	(b) 14	<i>•</i> 9]
	(a) <i>NO</i> ₂	(b) N ₂ O		(a) 10 (c) 7	(d) 5	
	(c) <i>NO</i>	(d) $N_2 O_2$	41.	Which of the foll	owing are isoelectronic speci	ies
1.	The ratio betweer	the neutrons in C and Si with	1	$I = CH_3^+, II - NH_2, II$	$I - NH_4^+, IV - NH_3$ [CPMT 199	99]
	respect to atomic	masses 12 and 28 is		[ÉAMCET 199 (a) I II III	o] (b) II III IV	
	(a) $2:3$	(b) $3:2$		(c) I, II, IV	(d) I and II	
	(c) $3:7$	(\mathbf{u}) $7:3$	42.	The charge on the	atom containing 17 protons,	18
2.	to	er of an element is always equal		neutrons and 18 e	lectrons is [AIIMS 199	96]
		[MP PMT 1994]		(a) +1	(b) -2	
	(a) Atomic weight	t divided by 2		(c) -1	(d) Zero	
	(b) Number of net	utrons in the nucleus	43.	Number of unpair	(b) 8	MT 1
	(c) Weight of the	nucleus		(c) 4	(d) 18	
-	(d) Electrical chai	rge of the nucleus	44.	In neutral atom, w	which particles are equivalent	
3.	carbon atom	onowing is isoerectronic with			[RPMT 199	97]
		[MP PMT 1994; UPSEAT 2000]		(a) p^+, e^+	(b) e^{-}, e^{+}	
	(a) Na ⁺	(b) Al^{3+}		(c) e^{-}, p^{+}	(d) p^+, n^o	
	(c) Q^{2-}	(d) N^+	45.	Nuclei tend to ha	ve more neutrons than proto	ns
4.	<i>CO</i> ₂ is isostructur	ral with		at high mass num	pers because[Roorkee Qualifyin	ig 19
	-	[IIT 1986; MP PMT 1986, 94, 95]		(a) Neutrons have	more mass than protons	
	(a) $SnCl_2$	(b) SO_2		(c) More neutro	ons minimize the coulor	mb
	(c) $H_{g}Cl_{a}$	(d) All the above	repu	llsion		
_	The herderide issue			(d) Neutrons decr	ease the binding energy	
5.	The hydride lons	(A) are isoelectronic with	46.	Which one of the	e following is not isoelectron	nic
	(2) I	(b) U_0^+		with O^{2-}		7
	(a) <i>Li</i> (c) <i>He</i>	$(0) H^{e}$		(a) N^{3-}	[CBSE PMT 199	} 4]
6	The number of old	(u) bc		(a) IV	(U) F	
J .	The number of ele		4-	(U) II	(u) Na	
	(a) 6	(b) 12	47.	The number of ele		
	(c) 0	(d) 3		(a) 19	[СРМТ 1997; АГМС 199 (b) 20	19]
7 .	An element has e	lectronic configuration 2, 8, 18,		(c) 18	(d) 40	
	1. If its atomic neutrons will be p	weight is 63, then how many present in its nucleus			· · · •	

48.	The number of electrons and neutrons of an element is 18 and 20 respectively. Its mass number is					
	[CPMT 1997; P	b. PMT 1999; MP PMT 1999]	60.			
	(a) 17	(b) 37 (d) 28				
40	(C) 2 Number of protons neu	(a) 30				
49.	element $\frac{231}{7}$ Y is					
	(a) 80, 221, 80	(b) 80 80 242				
	(c) 89, 142, 89	(d) 89, 71, 89	61.			
50.	Be^{2+} is isoelectronic with	th [EAMCET 1998]				
-	(a) Mg^{2+}	(b) <i>Na</i> ⁺				
	(c) Li^+	(d) H^+	62.			
51.	An isostere is	[UPSEAT 1999]				
5	(a) NO_2^- and O_3^-	(b) NO_{2}^{-} and PO_{4}^{3-}				
	(c) $CO = N = O = NO^{-1}$	(d) ClO^{-} and OCN^{-}				
52	Nitrogen atom has an	$(u) \ e_{i} e_{4}$ and $e_{i} e_{i}$	63.			
52.	oxygen has an atomic nu	imber 8. The total number				
	of electrons in a nitrate	ion will be [Pb. PMT 2000]				
	(a) 8	(b) 16				
	(c) 32	(d) 64				
53.	256 and 32 respectively.	its atomicity is [RPET 2000]	64.			
	(a) 2	(b) 8				
	(c) 4	(d) 16	65			
54.	The nitride ion in lithiur	n nitride is composed of	05.			
	(a) 7 protons ± 10 electr	[KCET 2000]				
	(b) 10 protons + 10 elect	trons	66.			
	(c) 7 protons + 7 proton	s				
	(d) 10 protons + 7 electr	rons				
55.	The atomic number of	an element is 17. The	67.			
	valence shell is	aining electron pairs in its				
		[CPMT 2001]				
	(a) Eight	(b) Six				
_	(c) Three	(d) Two				
56.	The atomic number of a number is 81. The num	n element is 35 and mass	68.			
	outer most shell is	inder of creetrons in the				
		[UPSEAT 2001]				
	(a) 7	(b) 6	69.			
	(c) 5	(d) 3	1			
57.	which of the following I	s not isoelectronic[MP PET 20	02]			
	(a) <i>Na</i>	(b) Mg ²				
	(c) O^{2-}	(d) <i>Cl</i> ⁻	7 0 .			
58.	The charge of an elect	tron is $-1.6 \times 10^{-19} C$. The				
	value of free charge on	Lt' ion will be				
	[AFM	C 2002; KCET (Engg.) 2002]				
	(a) 3.6×10^{-10} C	(D) $1 \times 10 \ C$				
	(c) $1.6 \times 10^{-17} C$	(a) 2.6×10 ² C				
59.	iso-electronic species is	[RPMT 2002]	71.			

- (a) F^{-} , O^{-2} (b) *F*⁻, *O* (c) F^{-}, O^{+} (d) F^{-} , O^{+2} An element have atomic weight 40 and it's electronic configuration is $1s^2 2s^2 2p^6 3s^2 3p^6$. Then its atomic number and number of neutrons will be [RPMT 2002]
- (b) 22 and 18 (a) 18 and 22 (d) 40 and 18 (c) 26 and 20 The nucleus of tritium contains [MP PMT 2002] (a) 1 proton + 1 neutron (b) 1 proton + 3 neutron (c) 1 proton + 0 neutron (d) 1 proton + 2 neutron Which one of the following groupings represents a collection of isoelectronic species [AIEEE 2003] (a) Na^+, Ca^{2+}, Mg^{2+} (b) N^{3-}, F^-, Na^+ (c) Be, Al^{3+}, Cl^{-} (d) Ca^{2+}, Cs^+, Br Which of the following are isoelectronic and isostructural $NO_3^-, CO_3^{2-}, ClO_3^-, SO_3$ [IIT Screening 2003] (a) NO_3^-, CO_3^{2-} (b) SO_3, NO_3^- (c) ClO_3^-, CO_3^{2-} (d) CO_3^{2-}, SO_3 The number of electrons in Cl^- ion is [MP PMT 2003] (a) 19 (b) 20 (c) 18 (d) 35 The number of neutron in tritium is [CPMT 2003]
- (a) 1 (b) 2 (c) 3 (d) 0
- Tritium is the isotope of [CPMT 2003] (a) Hydrogen (b) Oxygen (c) Carbon (d) Sulpher
- The atomic number of an element is 35. What is the total number of electrons present in all the porbitals of the ground state atom of that element
 - [EAMCET (Engg.) 2003] (a) 6 (b) 11 (c) 17 (d) 23
- The nucleus of an element contain 9 protons. Its valency would be
- (a) 1 (b) 3 (c) 2 (d) 5

The compound in which cation is isoelectronic with anion is

- [UPSEAT 2004]
- (a) NaCl (b) *CsF* (c) Nal
- (d) K_2S
- Which among the following species have the same number of electrons in its outermost as well as penultimate shell

[DCE 2004]

- (b) O²⁻ (a) Mg^{2+}
- (d) Ca²⁺ (c) F⁻

Six protons are found in the nucleus of

				Structure of atom 53
	[CPMT 1	977, 80, 81; NCERT 1975, 78]		(a) The force of repulsion on the moving alpha
	(a) Boron	(b) Lithium		particle is small
	(c) Carbon	(d) Helium		(b) The force of attraction on the alpha particle to
72.	The nitrogen atom has	7 protons and 7 electrons,		the oppositely charged electrons is very small
	the nitride ion (N^{3-}) wil	l have		(c) There is the strange of the stra
	(a) 7 protons and 10 ele	ectrons		electrons
	(b) 4 protons and 7 elec	ctrons		(d) The nucleus occupies much smaller volume
	(c) 4 protons and 10 ele	ectrons		compared to the volume of the atom
	(d) 10 protons and 7 ele	ectrons	6.	Positronium consists of an electron and a positron
73.	Number of neutrons in	heavy hydrogen atom is [MP PMT 1986]		electron, but opposite charge) orbiting round their common centre of mass. Calculate the value
	(a) 0			of the Rydberg constant for this system.
	(C) 2	(d) 3		(a) $R_{\infty}/4$ (b) $R_{\infty}/2$
74.	Which of the following	is always a whole number		(c) $2R$ (d) R
	(a) Atomio unight	[CPMT 1976, 81, 86]		
	(a) Atomic Weight (c) Equivalent weight	(d) Atomic radii (d) Atomic number	7.	When α -particles are sent through a thin metal foil, most of them go straight through the foil because (one or more are correct)
A	tomic models and Pla	nck's quantum theory		(a) Alpha particles are much heavier than
_			elec	trons
1.	Rutherford's experimen	t on scattering of particles		(b) Alpha particles are positively charged
	showed for the first tim	e that the atom has		(c) Most part of the atom is empty space
	[IIT 1981; NC	CERT 1981; CMC Vellore 1991;		(d) Alpha particles move with high velocity
	CPMT 1	1984; Kurukshetra CEE 1998]	o	When an electron jumps from L to K shall
	(a) Electrons	(b) Protons	0.	
	(c) Nucleus	(d) Neutrons		(a) Energy is absorbed
2.	Rutherford's scattering	experiment is related to		(a) Energy is absorbed
	the size of the	Ĩ		(b) Energy is released
	[IIT 1983;]	MADT Bihar 1995; BHU 1995]	relea	(c) Energy is sometimes absorbed and sometimes ased
	(a) Nucleus	(b) Atom		(d) Energy is neither absorbed nor released
	(c) Electron	(d) Neutron	٥.	When hervllium is bombarded with α -particles
3.	Rutherford's alpha part eventually led to the co	ticle scattering experiment nclusion that[IIT 1986; RPMT :	2002]	extremely penetrating radiations which cannot be deflected by electrical or magnetic field are given out. These are
	(a) Mass and energy are	e related		
	(b) Electrons occupy sp	ace around the nucleus		$(a) \wedge bacm of protons (b) < rays$
	(c) Neutrons are buried	l deep in the nucleus		(a) A beam of posttons (b) u -rays
	(d) The point of imp	act with matter can be		(c) A beam of neutrons (d) X-rays
4.	precisely determine	d	10.	Which one of the following is not the characteristic of Planck's quantum theory of radiation
T •	(a) The spectrum of hw	drogon atom only		(a) The energy is not absorbed or emitted in
	(a) The spectrum of stom	ar on ion containing one		whole number or multiple of quantum
elec	tron only	or ion containing one		(b) Radiation is associated with energy
	(c) The spectrum of hyd	drogen molecule		(c) Radiation energy is not emitted or absorbed
	(d) The solar spectrum			conti- nuously but in the form of small packets called quanta
5.	When atoms are bomba	arded with alpha particles.		(d) This magnitude of energy associated with a
-	only a few in million su	ffer deflection, others pass		quantum is proportional to the frequency

out undeflected. This is because[MNR 1979; NCERT 1980; AFMC 1995] 11. The spectrum of *He* is expected to be similar to

	54 Structure of atom		
	[AIIMS 1980, 91; DPMT 1983; MP PMT 2002]		(a) Increases (b) Decreases
	(a) H (b) Li^+		(c) Remains the same (d) None of these
	(c) Na (d) He^+	20.	Experimental evidence for the existence of the
	Energy of orbit [DPMT 1984, 91]		atomic nucleus comes from
	(a) Increases as we move away from nucleus		(a) Millikan's oil drop experiment
	(h) Decreases as we move away from nucleus		(b) Atomic emission spectroscopy
	(c) Remains same as we move away from nucleus		(c) The magnetic bending of cathode rays (d) Alpha costoring by a thin motal fail
	(d) None of these	21	Which of the following statements does not form
	Rohr model of an atom could not account for	21,	part of Bohr's model of the hydrogen atom[CBSE PMT
•	(a) Emission spectrum		(a) Energy of the electrons in the orbit is
	(a) Emission spectrum	quai	ntized
	(b) Absorption spectrum	1	(b) The electron in the orbit nearest the nucleus
	(d) Time an estimate		has the lowest energy
	(a) Fine spectrum		(c) Electrons revolve in different orbits around
•	Existence of positively charged nucleus was	the	nucleus
	[CRSE PMT 1001]		(d) The position and velocity of the electrons in
	(a) Positive ray analysis		the orbit cannot be determined
	(b) α -ray scattering experiments		simultaneously
	(a) Y row opplyzin	22.	When β -particles are sent through a tin metal
	(c) X-ray allarysis (d) Discharge tube concriments		foil, most of them go straight through the foil as[EAN
	(d) Discharge tube experiments		(a) β -particles are much heavier than electrons
	before pairing in any one orbital occurs, it is CBSE P	MT 100	(b) β -particles are positively charged
	(a) Pauli's exclusion principle		(c) Most part of the atom is empty space
	(b) Hund's Rule		(d) β -particles move with high velocity
	(c) Heisenberg's principle	23.	The energy of second Bohr orbit of the hydrogen
	(b) Prout's hypothesis	-	atom is -328 kJ mol^{-1} , hence the energy of fourth
	The wavelength of a spectral line for an electronic		Bohr orbit would be
•	transition is inversely related to [III 1988]		[CBSE PMT 2005]
	(a) The number of electrons undergoing the		(a) $-41 kJ mol^{-1}$ (b) $-1312 kJ mol^{-1}$
ιn	sition		(c) $-164 kJ mol^{-1}$ (d) $-82 kJ mol^{-1}$
	(b) The nuclear charge of the atom	24.	When an electron revolves in a stationary orbit
	(c) The difference in the energy of the energy		then
	levels involved in the transition		[MP PET 1994]
	(d) The velocity of the electron undergoing the		(a) It absorbs energy
n	sition		(b) It gains kinetic energy
	When an electron drops from a higher energy		(c) It emits radiation
	level to a low energy level, then [AMU 1985]		(d) Its energy remains constant
	(a) Energy is emitted	25.	A moving particle may have wave motion, if
	(b) Energy is absorbed		(a) Its mass is very high
	(c) Atomic number increases		(b) Its velocity is negligible
	(d) Atomic number decreases		(c) Its mass is negligible
	Davisson and Germer's experiment showed that		(d) Its mass is very high and velocity is negligible
	[MADT Bihar 1983]	26.	The postulate of Bohr theory that electrons jump
	(a) β -particles are electrons		from one orbit to the other, rather than flow is
	(b) Electrons come from nucleus		according to
	(c) Electrons show wave nature		(a) The quantisation concept
	(d) None of the above		(b) The wave nature of electron
	When an electron jumps from lower to higher		(c) The probability expression for electron
	orbit, its energy [MADT Bihar 1982]		(d) Heisenberg uncertainty principle

27.	The frequency of an ele	ectromagnetic radiation is		(c) Both release or absorption of energy
	$2 \times 10^{6} Hz$. What is its w	avelength in metres		(d) Unpredictable
	(Velocity of light $= 3 \times 10^{-14}$	$(8 m s^{-1})$	37.	In an element going away from nucleus, the energy of particle [RPMT 1997]
	(a) 6.0×10^{14}	(b) 1.5×10^{4}		(a) Decreases (b) Not changing
	(c) 1.5×10^2	(d) 0.66×10^{-2}		(c) Increases (d) None of these
28.	What is the packet of en	ergy called [AFMC 2005]	38.	The α -particle scattering experiment of
	(a) Electron	(b) Photon	9	Rutherford concluded that
	(c) Positron	(d) Proton		(a) The nucleus is made up of protons and
29.	The energy of an electro	on in <i>nth</i> orbit of hydrogen	neut	rons
	atom is	[MP PET 1000]		(b) The number of electrons is exactly equal to number of protons in atom
	13.6	13.6		(c) The positive charge of the atom is
	(a) $\frac{15.0}{n^4} eV$	(b) $\frac{13.0}{n^3} eV$		concentrated in a very small space
	(c) $\frac{13.6}{eV}$	(d) $\frac{13.6}{eV}$		(d) Electrons occupy discrete energy levels
	$\frac{1}{n^2}ev$	$(\alpha) = \frac{n}{n}$	39.	Wavelength associated with electron motion[BHU 19
30.	If wavelength	of photon		(a) Increases with increase in speed of electron
	is $2.2 \times 10^{-11} m$, $h = 6.6 \times 10^{-11} m$	⁻³⁴ <i>J-sec,</i> then momentum	.1	(b) Remains same irrespective of speed of
	of photon is	[MP PET 1999]	elect	tron
	(a) $3 \times 10^{-23} kg ms^{-1}$	(b) $3.33 \times 10^{22} kg ms^{-1}$		(c) Decreases with increase in speed of e^- (d) Is zero
	(c) $1.452 \times 10^{-44} \ kg \ ms^{-1}$	(d) $6.89 \times 10^{43} kg ms^{-1}$	40.	The element used by Rutherford in his famous
31.	The expression for Bohr	's radius of an atom is		(a) Gold (b) Tin
		[MP PMT 1999]		(c) Silver (d) Lead
	(a) $r = \frac{n^2 h^2}{4\pi^2 m e^4 z^2}$	(b) $r = \frac{n^2 h^2}{4\pi^2 m e^2 z}$	41.	If electron falls from $n = 3$ to $n = 2$, then emitted energy is
	n^2h^2	n^2h^2		[AFMC 1997: MP PET 2003]
	(c) $r = \frac{\pi n}{4\pi^2 m e^2 z^2}$	(d) $r = \frac{\pi n}{4\pi^2 m^2 e^2 z^2}$		(a) $10.2eV$ (b) $12.09eV$
	The energy of an electric	$\pi m c z$		(c) $1.9eV$ (d) $0.65eV$
32.	orbit of an atom is given	h by the expression [MP PMT 1	00443.	The radius of the nucleus is related to the mass
	$2\pi^2 m^4 a^2 r^2$	$2\sigma^2 m \sigma^2 - 2$	19991	number A by
	(a) $E_n = -\frac{2\pi m e^2 z}{n^2 h^2}$	(b) $E_n = -\frac{2\pi me^2 z}{n^2 h^2}$		(a) $R = R_o A^{1/2}$ (b) $R = R_o A$
	(c) $E_n = -\frac{2\pi^2 m e^4 z^2}{1 e^4 z^2}$	(d) $E_n = -\frac{2\pi m^2 e^2 z^4}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		(c) $R = R_o A^2$ (d) $R = R_o A^{1/3}$
	n^2h^2	n^2h^2	43.	The specific charge of proton is $9.6 \times 10^{6} C kg^{-1}$ then
33.	Who modified Bohr's	theory by introducing		for an α -particle it will be [MH CET 1999]
	emplical orbits for elect	(b) Themsen	MC 200	(a) $38.4 \times 10^7 C k g^{-1}$ (b) $19.2 \times 10^7 C k g^{-1}$
	(a) Hund (c) Rutherford	(d) Sommerfield		(c) $2.4 \times 10^7 C kg^{-1}$ (d) $4.8 \times 10^7 C kg^{-1}$
34.	Bohr's radius can have	[DPMT 1996]	44.	In hydrogen spectrum the different lines of Lyman
	(a) Discrete values	(b) +ve values		series are present is [UPSEAT 1999]
	(c) <i>–ve</i> values	(d) Fractional values		(a) UV field (b) IR field
35.	The first use of quant	um theory to explain the		(c) Visible field (d) Far <i>IR</i> field
	structure of atom was m	nade by[IIT 1997; CPMT 2001;]	J& I45 €	T whish one of the following is considered as the
	(a) Heisenberg	(b) Bohr	-	main postulate of Bohr's model of atom[AMU 2000]
	(c) Planck	(d) Einstein		(a) Protons are present in the nucleus
36.	An electronic transition	from 1s orbital of an atom		(b) Electrons are revolving around the nucleus
	causes			(c) Centrifugal force produced due to the
		[JIPMER 1997]		revolving electrons balances the force of
	(a) Absorption of energy	y		auraction between the electron and the
	(b) Release of energy			protons

	(d) Angular momentum	of electron is an integral	56.	The energy of a radiation of wavelength 8000 Å is	
	multiple of $\frac{h}{2}$			E_1 and energy of a radiation of wavelength 16000	
. 6	2π			A is E_2 . What is the relation between these two [Kerala (
46.	The electronic energy lo	evels of the hydrogen atom		(a) $E_1 = 6E_2$ (b) $E_1 = 2E_2$	
	(a) Rydberg levels	(b) Orbits		(c) $E_1 = 4E_2$ (d) $E_1 = 1/2E_2$	
	(c) Ground states	(d) Orbitals		(e) $E_1 = E_2$	
47.	The energy of a photon	is calculated by [Pb. PMT 2000	57.	The formation of energy bonds in solids are in	
17.	(a) $E = hv$	(b) $h = Ev$		accordance with [DCE 2001]	
	E	h		(a) Heisenberg's uncertainty principle	
	(c) $h = \frac{L}{V}$	(d) $E = \frac{\pi}{v}$		(b) Bohr's theory	
48.	Visible range of hydro	gen spectrum will contain		(d) Rutherford's atomic model	
-	the following series	[RPET 2000]	58.	The frequency of vellow light having wavelength	
	(a) Pfund (b) Lyman		0	600 nm is	
	(c) Balmer	(d) Brackett		[MP PET 2002]	
49 .	Radius of the first Boh	r's orbit of hydrogen atom		(a) $5.0 \times 10^{14} Hz$ (b) $2.5 \times 10^{7} Hz$	
	is			(c) $5.0 \times 10^7 Hz$ (d) $2.5 \times 10^{14} Hz$	
		[RPET 2000]	59 .	The value of the energy for the first excited state	
	(a) 1.06 A	(b) 0.22 A		of hydrogen atom will be [MP PET 2002]	
	(c) 0.28 Å	(d) 0.53 Å		(a) $-13.6eV$ (b) $-3.40eV$	
50.	In Balmer series of	hydrogen atom spectrum		(c) $-1.51 eV$ (d) $-0.85 eV$	
-	which electronic transition causes third line[MP PMT 2880]			Bohr model of atom is contradicted by[MP PMT 2002]	
	(a) Fifth Bohr orbit to second one			(a) Pauli's exclusion principle	
	(b) Fifth Bohr orbit to f	irst one		(b) Planck quantum theory	
	(c) Fourth Bohr orbit to	second one		(c) Heisenberg uncertainty principle	
	(d) Fourth Bohr orbit to	o first one	64	(d) All of these	
51.	Energy of electron of	hydrogen atom in second	61.	which of the following is not true in Rutherford's nuclear model of atom [Orissa IEE 2002]	
	Bohr orbit is		(a) Protons and neutrons are present inside		
	10	[MP PMT 2000]		nucleus	
	(a) $-5.44 \times 10^{-19} J$	(b) $-5.44 \times 10^{-13} kJ$		(b) Volume of nucleus is very small as compared	
	(c) $-5.44 \times 10^{-19} cal$	(d) $-5.44 \times 10^{-19} eV$		to volume of atom	
52.	If change in energy			(c) The number of protons and neutrons are	
	$(\Delta E) = 3 \times 10^{-8} J, h = 6.64 \times 10^{-34} J - s$ and			always equal	
	$c = 3 \times 10^8 m/s$, then wav	elength of the light is		(d) The number of electrons and protons are	
		[CBSE PMT 2000]	62	The emission spectrum of hydrogen is found to	
	(a) $6.36 \times 10^3 \text{ Å}$	(b) $6.36 \times 10^5 \text{ Å}$	04.	satisfy the expression for the energy change. ΛF	
	(c) $6.64 \times 10^{-8} \text{ Å}$	(d) $6.36 \times 10^{18} \text{ Å}$		$(1 \ 1)$	
53 .	The radius of first Bo	hr's orbit for hydrogen is		(in joules) such that $\Delta E = 2.18 \times 10 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) J$	
	0.53 Å. The radius of th	ird Bohr's orbit would be[MP	PMT 2	where $n_1 = 1, 2, 3, \dots$ and $n_2 = 2, 3, 4, \dots$ The	
	(a) 0.79 A	(b) 1.59 A		spectral lines correspond to Paschen series to	
54.	Rutherford's <i>o</i> -particl	e scattering experiment		(a) $n_1 = 1$ and $n_2 = 2, 3, 4$	
54.	proved that atom has	[MP PMT 2001]		(b) $n_1 = 3$ and $n_2 = 4, 5, 6$	
	(a) Electrons	(b) Neutron		(c) $n_1 = 0$ and $n_2 = 3.4.5$	
	(c) Nucleus	(d) Orbitals		(d) $n_1 = 1$ and $n_2 = 3, 4, 5$	
55.	Wavelength of spectra	l line emitted is inversely		(d) $n_1 = 2$ and $n_2 = 3, 3, 5$	
	proportional to	(b) Enorgy	[0	CRMJT 2001] and $n_2 = infinity$	
	(a) Kaulus (c) Velocity	(d) Quantum number	63.	The ratio between kinetic energy and the total	
	(c) verocity			energy of the electrons of hydrogen atom	
				[Pb. PMT 2002]	
				(a) 2 : 1 (b) 1 : 1	

	(c) $1 \cdot - 1$	(d) 1 · 2	_	stationary state 1 wo	ould be (Rydberg constant
64.	Energy of the electron	in Hydrogen atom is given		$=1.097 \times 10^{7} m^{-1}$)	sala de (Ryaberg constant
•4.	by			-1.097 ×10 m j	
	- 0	[AMU (Engg.) 2002]		(a) 406 <i>nm</i>	[AIEEE 2004] (b) 192 nm
	(a) $E_n = -\frac{131.38}{2} kJ mol^{-1}$	(b) $E_n = -\frac{131.33}{k} kJ mol^{-1}$		(c) 91 nm	(d) $9.1 \times 10^{-8} nm$
	(c) $E_n = -\frac{1313.3}{2} kJ mol^{-1}$	(d) $E_n = -\frac{313.13}{2} kJ mol^{-1}$	75.	In Bohr's model, atomi γ , the radius of the 3 rd	c radius of the first orbit is orbit, is [MP PET 1997; Pb. CET 200:
c -	n ²			(a) γ/3	(b) γ
65.	atom	and first Bonr orbits of H		(c) 3 <i>γ</i>	(d) 9γ
	utom	[BHU 2003]	76.	According to Bohr's	principle, the relation
	(a) 2	(b) 4		between principle quar	ntum number (n) and radius
	(c) 3	(d) 5		of orbit is	[BHU 2004]
66.	The frequency correspo	onding to transition $n=2$		(a) $r \propto n$	(b) $r \propto n^2$
	to $n = 1$ in hydrogen atom is [MP PET 2003]			(c) $r \propto \frac{1}{r}$	(d) $r \propto \frac{1}{2}$
	(a) $15.66 \times 10^{10} Hz$	(b) $24.66 \times 10^{14} Hz$		n The ionication notanti	n^{-}
	(c) $30.57 \times 10^{14} Hz$	(d) $40.57 \times 10^{24} Hz$		12.6 eV What will h	e the energy of the atom
67.	The mass of a photon v	vith a wavelength equal to		corresponding to $n = 2$	e the chergy of the atom
	$1.54 \times 10^{-8} cm$ is	[Pb. PMT 2004]		1 0	[Pb. CET 2000]
	(a) $0.8268 \times 10^{-34} kg$	(b) $1.2876 \times 10^{-33} kg$		(a) -3.4 <i>eV</i>	(b) -6.8 <i>eV</i>
	(c) $1.4285 \times 10^{-32} kg$	(d) $1.8884 \times 10^{-32} kg$		(c) -1.7 <i>eV</i>	(d) – 2.7 <i>eV</i>
68.	Splitting of spectral lir magnetic field is called	nes under the influence of [MP PET 2004]	78.	The energy of electron grounds state is -13.6 corresponding to the o	n in hydrogen atom in its eV. The energy of the level Juantum number equal to 5
	(a) Zeeman effect	(b) Stark effect		is [Pb. CET 2002]	
	(c) Photoelectric effect	(d) None of these		(a) -0.54 eV	(b) – 0.85 <i>eV</i>
69.	The radius of electron i	in the first excited state of		(c) – 0.64 <i>eV</i>	(d) – 0.40 <i>eV</i>
	(2) a	[MP PMT 2004]	7 9 .	The positive charge of	an atom is [AFMC 2002]
	(a) u_0	$(0) 4a_0$		(a) Spread all over the	atom
	(c) $2a_0$	(a) $8a_0$		(b) Distributed around	the nucleus
7 0 .	The ratio of area cover	ed by second orbital to the		(d) All of these	lucieus
	first orbital is	[AFMC 2004]	80.	A metal surface is expo	used to solar radiations [DPMT 2004
	(a) $1:2$	(0) 1 : 10 (d) 16 : 1		(a) The emitted electro	ons have energy less than a
71	Time taken for an e	differente complete one		maximum value o	of energy depending upon
/1.	revolution in the Bohr o	orbit of hydrogen atom is [Ker	ala PM	frequency of incide	nt radiations
	$4\pi^2 mr^2$	nh		(b) The emitted electr	ons have energy less than
	(a) $\frac{nn}{nh}$	(b) $\frac{m}{4\pi^2 mr}$		intensity of inciden	t radiation
	nh	h		(c) The emitted electro	ons have zero energy
	(c) $\frac{m^2}{4\pi^2 mr^2}$	(d) $\frac{\pi}{2\pi mr}$		(d) The emitted electr	cons have energy equal to
72.	The radius of which of	the following orbit is same		energy of photos of	incident light
,	as that of the first Bohr	's orbit of hydrogen atom	81.	Which of the following	transitions have minimum
		[IIT Screening 2004]		wavelength (2) $n \rightarrow n$	[DPMT 2005]
	(a) $He^+(n=2)$	(b) $Li^{2+}(n=2)$		(a) $n_4 \rightarrow n_1$	(d) $n_2 \rightarrow n_1$
	(c) $Li^{2+}(n=3)$	(d) $Be^{3+}(n=2)$		$(c) n_4 \to n_2$	(u) $n_3 \rightarrow n_1$
73.	The frequency of rad electron falls from $n =$	iation emitted when the 4 to $n=1$ in a hydrogen		Dual nature	of electron
	atom will be (Give $H = 2.18 \times 10^{-18} J$ atom ⁻¹ ar	n ionization energy of id $h = 6.625 \times 10^{-34} Js$)	1.	De broglie equation de [CBSE PMT 2004] wavelength associated w	escribes the relationship of vith the motion of an electron

- (a) $3.08 \times 10^{15} s^{-1}$ (b) $2.00 \times 10^{15} s^{-1}$
- (c) $1.54 \times 10^{15} s^{-1}$ (d) $1.03 \times 10^{15} s^{-1}$
- **74.** The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to

The wave nature of an electron was first given by

(b) Energy

(d) Charge

and its[MP PMT 1986]

(a) Mass

2.

(c) Momentum

	[CMC Vellore 1991; Pb. PMT 1998; CPMT 2004]		(a) $9.28 \times 10^{-4} m$ (b) $9.28 \times 10^{-7} m$
	(a) De-Broglie (b) Heisenberg		(-) $(-)$
	(c) Mosley (d) Sommerfield		(c) $9.28 \times 10^{-6} m$ (d) $9.28 \times 10^{-6} m$
3.	Among the following for which one mathematical	12.	What will be de-Broglie wavelength of an electron maying with a velocity of 1.2×10^5 ms ⁻¹ LNB DET accord
	expression $\lambda = \frac{h}{n}$ stands		moving with a velocity of 1.2×10 ms [MP PEI 2000]
			(a) 6.068×10^{-9} (b) 3.133×10^{-37}
	(a) De Broglie equation (b) Einstein equation		(c) 6.626×10^{-9} (d) 6.018×10^{-7}
	(c) Uncertainty equation (d) Bonr equation	13.	The de-Broglie wavelength associated with a
4.	a stream of particles and as wave motion		particle of mass $10^{-6}kg$ moving with a velocity of
	[AIIMS 1983: IIT 1992: UPSEAT 2003]		$10 m s^{-1}$, is
	(a) Diffraction (b) $\lambda = h/p$		[AIIMS 2001]
	(c) Interference (d) Photoelectric effect		(a) $6.63 \times 10^{-22} m$ (b) $6.63 \times 10^{-29} m$
5.	In which one of the following pairs of experimental		(-) $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$
5.	observations and phenomenon does the		(c) $6.63 \times 10^{-5} m$ (d) $6.63 \times 10^{-5} m$
	experimental observation correctly account for phenomenon [AIIMS 1983]	14.	What is the de-Broglie wavelength associated with the hydrogen electron in its third orbit[AMU (Engg.)
	Experimental observation Phenomenon		(a) $9.96 \times 10^{-10} cm$ (b) $9.96 \times 10^{-8} cm$
	(a) <i>X</i> -ray spectra Charge on the nucleus		(c) $9.96 \times 10^4 cm$ (d) $9.96 \times 10^8 cm$
	(b) α -particle scatteringQuantized electron orbit	15.	If the velocity of hydrogen molecule is
	(c) Emission spectra The quantization of		$5 \times 10^{4} cm sec^{-1}$, then its de-Broglie wavelength is [MP PMT
ener	gy		(a) 2 Å (b) 4 Å
<u> </u>	(d) The photoelectric effect The nuclear atom		(c) 8 Å (d) 100 Å
0.	Broglie relationship[MP PMT 1996, 2004; MP PET/PMT	998]	A 200 g golf ball is moving with a speed of 5 m per hour. The associated wave length is
	(a) $h = \frac{\lambda}{mn}$ (b) $\lambda = \frac{h}{mn}$		$(h = 6.625 \times 10^{-34} J - sec)$
	m v		[MP PET 2003]
	(c) $\lambda = \frac{m}{hv}$ (d) $\lambda = \frac{v}{mh}$		(a) $10^{-10} m$ (b) $10^{-20} m$
7.	de-Broglie equation is		(c) $10^{-30} m$ (d) $10^{-40} m$
	[MP PMT 1999; CET Pune 1998]	17.	A cricket ball of $0.5 kg$ is moving with a velocity
	(a) $n\lambda = 2d\sin\theta$ (b) $E = hv$	-	of $100 m/sec$. The wavelength associated with its
	(c) $E = mc^2$ (d) $\lambda = \frac{h}{m}$		motion is
•	mv		[DCE 2004]
8.	1 ne de-Broglie wavelength of a particle with mass 1_{am} and velocity $100 m/sec$ is[CBSE PMT 1000; FAMCE]	1007	(a) $1/100 cm$ (b) $6.6 \times 10^{-34} m$
	AFMC 1999: AIIMS 2000]	-997	'(c) $1.32 \times 10^{-35} m$ (d) $6.6 \times 10^{-28} m$
	(a) $6.63 \times 10^{-33} m$ (b) $6.63 \times 10^{-34} m$	18.	Dual nature of particles was proposed by [DCE 2004]
	(c) $6.63 \times 10^{-35} m$ (d) $6.65 \times 10^{-35} m$		(a) Heisenberg (b) Lowry (c) de-Broglie (d) Schrodinger
9.	Minimum de-Broglie wavelength is associated	19.	Calculate de-Broglie wavelength of an electron
	with[RPMT 1999]		travelling at 1% of the speed of light [DPMT 2004]
	(a) Electron (b) Proton		(a) 2.73×10^{-24} (b) 2.42×10^{-10}
	(c) CO_2 molecule (d) SO_2 molecule		(c) 242.2×10^{10} (d) None of these
10.	The de-Broglie wavelength associated with amaterial particle is[JIPMER 2000]	20.	Which is the correct relationship between wavelength and momentum of particles[Pb. PMT 2000]
	(a) Directly proportional to its energy		(a) $\lambda = \frac{n}{p}$ (b) $\pi = \frac{h}{p}$
	(b) Directly proportional to momentum		h P
	(c) Inversely proportional to its energy		(c) $P = \frac{\lambda}{\lambda}$ (d) $h = \frac{\lambda}{\lambda}$
	(a) inversely proportional to momentum	21.	The de-Broglie equation applies [MP PMT 2004]
11.	An electron has kinetic energy $2.8 \times 10^{-23} J$. de-		(a) To electrons only
	broghe wavelength will be hearly		(b) To neutrons only
	$(m_e = 9.1 \times 10^{-3} kg)$ [MP PET 2000]		(c) To protons only(d) All the material object in motion

I.The uncertainty principle was enunciated by [NCERT 1975; Bihar MEE 1997] (a) Einstein (b) Heisenberg (c) Rutherford (d) Pauli(c) $> \frac{h}{2\lambda}$ (d) Infinite1.The possibility of finding an electron in an orbital was conceived by [MP PMT 1994](a) Infinite2.According to heisenberg uncertainty principle [AMU 1990; BCECE 2005] (a) $E = mc^2$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p \ge \frac{h}{6\pi}$ 3."The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is(c) $A = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron(d) Principle of de Broglie's wave nature of electron(d) Principle of de Broglie's wave nature of electron(d) Principle of de Broglie's wave nature of electron	U	ncertainty principle and Schrodinger wave equation		(a) Zero	(b) $<\frac{h}{2\lambda}$
1. The uncertainty principle was enunciated by [NCERT 1975; Bihar MEE 1997] (a) Einstein (b) Heisenberg (c) Rutherford (d) Pauli 2. According to heisenberg uncertainty principle [AMU 1990; BCECE 2005] (a) $E = mc^2$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ 3. "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is [NCERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron				(c) $> \frac{h}{2\lambda}$	(d) Infinite
(a) Einstein (b) Heisenberg (c) Rutherford (d) Pauli 2. According to heisenberg uncertainty principle [AMU 1990; BCECE 2005] (a) $E = mc^2$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ 3. "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is [NCERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron	1.	The uncertainty principle was enunciated by [NCERT 1975; Bihar MEE 1997]	9.	The possibility of findin was conceived by	g an electron in an orbital [MP PMT 1994]
(c) Rutherford (d) Pauli (d) Pauli (d) Pauli (e) Pauli (d) Pauli (e) Pauli (f) Pa		(a) Einstein (b) Heisenberg		(a) Rutherford	(b) Bohr
2. According to heisenberg uncertainty principle $[AMU 1990; BCECE 2005]$ (a) $E = mc^2$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (e) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (c) Physical meaning of Ψ the Ψ^2 (d) All the above 3. "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is $[NCERT 1979; BHU 1981, 87]$ (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron	_	(c) Rutherford (d) Pauli		(c) Heisenberg	(d) Schrodinger
(a) $E = mc^{2}$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (e) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (f) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (g) Probability (h) An orbital (c) Physical meaning of Ψ the Ψ^{2} (c) Physical meaning of Ψ the Ψ^{2} (d) All the above 11. The uncertainty principle and the concept of wave nature of matter was proposed by and respectively (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron	2.	According to neisenberg uncertainty principle	10.	Uncertainty principle ga	ave the concept of
(a) $E = mc^{2}$ (b) $\Delta x \times \Delta p \ge \frac{h}{4\pi}$ (c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (e) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (f) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (g) An orbital (c) Physical meaning of Ψ the Ψ^{2} (d) All the above 11. The uncertainty principle and the concept of wave nature of matter was proposed by and respectively [NCERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron		[AMU 1990; BCECE 2005]		(a) Probability	
(c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$ (c) Physical meaning of Ψ the Ψ^2 (d) All the above (d) All the above (d) All the above (d) All the above (for the statement is EXERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron (c) Physical meaning of Ψ the Ψ^2 (d) All the above (for the statement is EXERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (c) Principle of de Broglie's wave nature of electron (c) Physical meaning of Ψ the Ψ^2 (d) All the above (for the statement is EXERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (c) Physical meaning of Ψ the Ψ^2 (d) All the above (for the statement is EXERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (c) Heisenberg, de Broglie (b)de-Broglie, Heisenberg (c) Heisenberg, Planck (d) Planck, Heisenberg (c) Heisenbe		(a) $E = mc^2$ (b) $\Delta x \times \Delta p \ge \frac{n}{4\pi}$		(b) An orbital	
 3. "The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is [NCERT 1979; BHU 1981, 87] (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of electron 		(c) $\lambda = \frac{h}{p}$ (d) $\Delta x \times \Delta p = \frac{h}{6\pi}$		(c) Physical meaning of	Ψ the Ψ^2
[NCERT 1979; BHU 1981, 87][MP PET 1997](a) Heisenberg uncertainty principle(a) Heisenberg, de Broglie(b) de-Broglie, Heisenberg(b) Principle of de Broglie's wave nature of electron(c) Heisenberg, Planck(d) Planck, Heisenberg	3.	"The position and velocity of a small particle like electron cannot be simultaneously determined." This statement is	11.	The uncertainty princip nature of matter was p respectively	le and the concept of wave proposed by and
 (a) Heisenberg uncertainty principle (b) Principle of de Broglie's wave nature of (c) Heisenberg, de Broglie (d) Heisenberg, de Broglie (e) Heisenberg, Planck (f) Planck, Heisenberg 		[NCERT 1979; BHU 1981, 87]			[MP PET 1997]
(b) Principle of de Broglie's wave nature of (c) Heisenberg, Planck (d) Planck, Heisenberg		(a) Heisenberg uncertainty principle		(a) Heisenberg, de Brog	lie (b)de-Broglie, Heisenberg
Alactron		(b) Principle of de Broglie's wave nature of		(c) Heisenberg, Planck	(d) Planck, Heisenberg
12. The uncertainty in momentum of an electron is	elect	ron	12.	The uncertainty in mor	mentum of an electron is
(c) Pault's exclusion principle $1 \times 10^{-5} kg - m/s$. The uncertainty in its position		(c) Pault's exclusion principle		$1 \times 10^{-5} kg - m/s$. The un	ncertainty in its position
(d) Aurbau's principle will be $(h = 6.62 \times 10^{-34} kg - m^2 / s)$		(d) Aufdau's principle		will be ($h = 6.62 \times 10^{-34} kg$	$g-m^2/s$)
4. In Heisenberg's uncertainty equation h [AFMC 1998; CBSE PMT 1999; JIPMER 2002]	4.	h h		[AFMC 1998; CB	SE PMT 1999; JIPMER 2002]
$\Delta x \times \Delta p \ge \frac{\pi}{4\pi}$; Δp stands for (a) $1.05 \times 10^{-28} m$ (b) $1.05 \times 10^{-26} m$		$\Delta x \times \Delta p \ge \frac{\pi}{4\pi}$; Δp stands for		(a) $1.05 \times 10^{-28} m$	(b) $1.05 \times 10^{-26} m$
(a) Uncertainty in energy (c) 5.27×10^{-30} m (d) 5.25×10^{-28} m		(a) Uncertainty in energy		(a) 5.27×10^{-30} m	(d) 5.25×10^{-28} m
(b) Uncertainty in velocity $(c) (c) $		(b) Uncertainty in velocity	40	(c) 5.27×10^{-10} m	$(\mathbf{u}) 5.25 \times 10^{\circ} m$
(c) Uncertainty in momentum (d) Uncertainty in mass $10^{-5}m$. Calculate the uncertainty in its velocity		(c) Uncertainty in momentum(d) Uncertainty in mass	13.	of mass 10 gm is $10^{-5}m$. Calculate the uncertainty
5. Which one is not the correct relation in the [DCE 1999]	5۰	Which one is not the correct relation in the			[DCE 1999]
following (a) $5.2 \times 10^{-28} m / sec$ (b) $3.0 \times 10^{-28} m / sec$		following		(a) $5.2 \times 10^{-28} m / sec$	(b) $3.0 \times 10^{-28} m/sec$
(a) $h = \frac{E}{2}$ (b) $F = mc^2$		(a) $h = \frac{E}{2}$ (b) $E = mc^{2}$		(a) 5.2×10^{-22}	$(0) 5.0 \times 10^{-22}$
(d) $h = \frac{1}{v}$ (b) $L = mc$ (c) $5.2 \times 10^{-22} m / sec$ (d) $3 \times 10^{-22} m / sec$		$(a) n - \frac{1}{v}$ (b) $L - mc$		(c) $5.2 \times 10^{-22} m / sec$	(d) $3 \times 10^{-22} m / sec$
(c) $\Delta x \times \Delta p = \frac{n}{4\pi}$ (d) $\lambda = \frac{n}{mv}$ 14. The equation $\Delta x \Delta p \ge \frac{1}{4\pi}$ shows [MP PET 2000]		(c) $\Delta x \times \Delta p = \frac{n}{4\pi}$ (d) $\lambda = \frac{n}{mv}$	14.	The equation $\Delta x . \Delta p \ge \frac{1}{4\pi}$	shows [MP PET 2000]
6. The maximum probability of finding an electron (a) de-Broglie relation (b) Heisenberg's uncertainty principle	6.	The maximum probability of finding an electron		(a) de-Broglie relation	ainty principlo
in the d_{xy} orbital is [MP PET 1996] (b) Heisenberg's uncertainty principle		in the d_{xy} orbital is [MP PET 1996]		(c) Aufhau principle	
(a) Along the <i>x</i> -axis (d) Hund's rule		(a) Along the <i>x</i> -axis		(d) Hund's rule	
(b) Along the y-axis 15. Which quantum number is not related with		(b) Along the <i>y</i> -axis	15.	Which quantum numb	per is not related with
(c) At an angle of 45° from the x and y-axes Schrödinger equation [RPMT 2002]		(c) At an angle of 45° from the x and y-axes		Schrodinger equation	[RPMT 2002]
(d) At an angle of 90° from the x and y-axes (a) Principal (b) Azimuthal		(d) At an angle of 90° from the x and y-axes		(a) Principal	(b) Azimuthal
7. Simultaneous determination of exact position and (c) Magnetic (d) Spin	7.	Simultaneous determination of exact position and		(c) Magnetic	(d) Spin
momentum of an electron is [BHU 1979] 16. Uncertainty in position of a 0.25 g particle is 10^{-5} . Uncertainty of velocity is $(h = 6.6 \times 10^{-34} Js)$ [AIEEE 2	,.	momentum of an electron is [BHU 1979]	16.	Uncertainty in position 10^{-5} . Uncertainty of velocities	n of a 0.25 <i>g</i> particle is ocity is $(h = 6.6 \times 10^{-34} Js)$ [AIEEE 20]
(a) Possible (a) 1.2×10^{34} (b) 2.1×10^{-29}		(a) Possible		(a) 1.2×10^{34}	(b) 2.1×10^{-29}
(b) Impossible (c) 1.6×10^{-20} (d) 1.7×10^{-9}		(b) Impossible		(c) 1.6×10^{-20}	(d) 1.7×10^{-9}
(c) Sometimes possible sometimes impossible 17 . The uncertainty in momentum of an electron is		(c) Sometimes possible sometimes impossible	17.	The uncertainty in mo	mentum of an electron is
(d) None of the above $1 \times 10^{-5} kgm/s$. The uncertainty in information will		(d) None of the above	±/•	$1 \times 10^{-5} kgm/s$. The unce	rtainity in its position will
8. If uncertainty in the position of an electron is $(h = 6.63 \times 10^{-34} \text{ k})$	8.	If uncertainty in the position of an electron is		be $(h = 6.63 \times 10^{-34} I_{\rm S})$	[Dh CET 2000]
(a) $5.28 \times 10^{-30} m$ (b) $5.25 \times 10^{-28} m$		zero, the uncertainty in its momentum would be[CPM	11 1988	(a) $5.28 \times 10^{-30} m$	(b) $5.25 \times 10^{-28} m$

18.	(c) $1.05 \times 10^{-26} m$ (d) $2.715 \times 10^{-30} m$ According to Heisenberg's uncertainty principle, the product of uncertainties in position and velocities for an electron of mass $9.1 \times 10^{-31} kg$ is	5.	Nitrogen has the electronic configuration $1s^2, 2s^2 2p_x^1 2p_y^1 2p_z^1$ and not $1s^2, 2s^2 2p_x^2 2p_y^1 2p_z^0$ which is determined by [DPMT [iBf2], 83,089]; MP PMT/PET 1988; EAMCET 1988]
19.	(a) $2.8 \times 10^{-3} m^2 s^{-1}$ (b) $3.8 \times 10^{-5} m^2 s^{-1}$ (c) $5.8 \times 10^{-5} m^2 s^{-1}$ (d) $6.8 \times 10^{-6} m^2 s^{-1}$ For an electron if the uncertainty in velocity is	prin 6	(a) Autoau's principle (b) Fault's exclusion ciple (c) Hund's rule (d) Uncertainty principle
	Δv , the uncertainty in its position (Δx) is given by[D	ор РМТ 2	represents a noble gas
	(a) $\frac{hm}{4\pi\Delta\nu}$ (b) $\frac{4\pi}{hm\Delta\nu}$		(a) $1s^2, 2s^2 2p^6, 3s^2$ (b) $1s^2, 2s^2 2p^6, 3s^1$
	(c) $\frac{h}{4\pi m \Delta v}$ (d) $\frac{4\pi m}{h \Delta v}$		(c) $1s^2, 2s^2 2p^6$ (d) $1s^2, 2s^2 sp^6, 3s^2 3p^6, 4s^2$
20.	Orbital is [DPMT 2005]	7.	The electronic configuration of silver atom in
	(a) Circular path around the nucleus in which the electron revolves		ground state is [CPMT 1984, 93]
	(b) Space around the nucleus where the		(a) $[Kr]3d^{10} 4s^{1}$ (b) $[Xe]4f^{14} 5d^{10} 6s^{1}$
	probability of finding the electron is maximum		(c) $[Kr]4d^{10}5s^1$ (d) $[Kr]4d^95s^2$
	(c) Amplitude of electrons wave (d) None of these	8.	Principal, azimuthal and magnetic quantum numbers are respectively related to[CPMT 1988; AIIMS 199
			(a) Size, shape and orientation
(Quantum number, Electronic configuration		(c) Size, orientation and shape
	and Shape of orbitals		(d) None of the above
1.	Be's 4th electron will have four quantum numbers [MNR 1985]	9.	Correct set of four quantum numbers for valence electron of rubidium ($Z = 37$) is
	n l m s		[IIT 1984; JIPMER 1999; UPSEAT 2003]
	(a) 1 0 0 $+1/2$ (b) 1 1 $+1$ $+1/2$		(a) $5, 0, 0, +\frac{1}{2}$ (b) $5, 1, 0, +\frac{1}{2}$
	(c) 2 0 0 $-1/2$ (d) 2 1 0 $+1/2$		(c) $5,1,1,+\frac{1}{2}$ (d) $6,0,0,+\frac{1}{2}$
2.	The quantum number which specifies the location of an electron as well as energy is [DPMT 1983]	10.	The correct ground state electronic configuration of chromium atom is[IIT 1989, 94; MP PMT 1993; EAMCET 1997;
(a) Principal quantum number			ISM Dhanbad 1994; AFMC 1997; Bihar MEE 1996;
	(b) Azimuthal quantum number		MP PET 1995, 97; CPMT 1999; Kerala PMT 2003]
	(c) Spin quantum number		(a) $[Ar]3d^3 4s^1$ (b) $[Ar]3d^4 4s^2$
_	(d) Magnetic quantum number		(c) $[AR]3d^64s^0$ (d) $[Ar]4d^54s^1$
3.	number	11.	2p orbitals have[NCERT 1981; MP PMT 1993, 97](a) $n = 1, l = 2$ (b) $n = 1, l = 0$
	(a) n (b) l		(c) $n = 2, l = 1$ (d) $n = 2, l = 0$
	(c) m (d) s	12.	Electronic configuration of H^- is [CPMT 1985]
4.	In a given atom no two electrons can have the same values for all the four quantum numbers.		(a) $1s^0$ (b) $1s^1$
			(c) $1s^2$ (d) $1s^1 2s^1$
	[BHU 1979; AMU 1983; EAMCET 1980, 83; MADT Bihar 1980; CPMT 1986, 90, 92; NCERT 1978, 84;	13.	The quantum numbers for the outermost electron of an element are given below as
RPMT 1997; CBSE PMT 1991; MP PET 1986, 99]			$n = 2, l = 0, m = 0, s = +\frac{1}{2}$. The atoms is
	(a) Hund's rule		2
	(b) Autbau's principle		(a) Lithium (b) Beryllium
(c) Uncertainty principle		14	(C) Hydrogen (d) Boron
	(a) raun s exclusion principle	14.	[EAMCET 1979; IIT 1983; MNR 1990;UPSEAT 2000, 02]

			Structure of atom 61
	(a) Size of the orbital		(b)
	(b) Spin angular momentum		(c)
	(c) Orbital angular momentum		
	(d) Space orientation of the orbital		(d)
5.	An element has the electronic configurat	ion 21	The following has zero valency [DPMT 1001]
	$1s^2, 2s^2 2p^6, 3s^2 3p^2$. Its valency electrons are	24.	(a) Sodium (b) Bervllium
	[NCERT 19	973]	(c) Aluminium (d) Krypton
	(a) 6 (b) 2	25.	The number of electrons in the valence shell of
	(c) 3 (d) 4		calcium is
6.	The magnetic quantum number specifies		[IIT 1975]
	[MNR 1986; BHU 1982; CPMT 1989,	94;	(a) 6 (b) 8
	MP PET 1999; AFMC 1999; AMU (Engg.) 19	99]	(c) 2 (d) 4
	(a) Size of orbitals (b) Shape of orbitals	26.	(a) (b) 2
	(c) Orientation of orbitals (d) Nuclear stabi	lity	(a) 0 (b) 2 (c) 4 (d) 6
7.	Which of the following sets of quantum numb	ers 27.	For the dumb-bell shaped orbital, the value of l is
	represent an impossible arrangement[IIT 1986;	MP PET 1995	[CPMT 1987, 2003]
	n l m m _s		(a) 3 (b) 1
	$(3) 2 2 - 2 (+)^{\frac{1}{2}}$		(c) 0 (d) 2
	(a) $3 2 -2 (+) \frac{1}{2}$	28.	Chromium has the electronic configuration
	(b) $(-1)^{\frac{1}{2}}$		$4s^13d^5$ rather than $4s^23d^4$ because
	(0) 4 0 0 $(-)\frac{1}{2}$		(a) $4s$ and $3d$ have the same energy
	$(c) 2 - 2 - (+)^{1}$		(b) $4s$ has a higher energy than $3d$
	(c) $3 \ 2 \ -3 \ (+) \frac{1}{2}$		(c) $4s^1$ is more stable than $4s^2$
	(d) = 2		(d) $4s^1 3d^5$ half-filled is more stable than $4s^2 3d^4$
	(d) 5 3 0 (-) $\frac{1}{2}$	29.	The electronic configuration of calcium ion (Ca^{2+})
3.	If $n = 3$, then the value of ' <i>l</i> ' which is incorrect	_	is
	[CPMT 19	94]	[CMC Vellore 1991]
	(a) 0 (b) 1		(a) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2$
	(c) 2 (d) 3		(b) $1s^2, 2s^2sp^6, 3s^23p^6, 4s^1$
).	Which orbital is dumb-bell shaped		(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^2$
	[MP PMT 1986; MP PET/PMT 19	98]	(d) $1s^2 \cdot 2s^2 sp^6 \cdot 3s^2 3p^6 3d^5$
	(a) <i>s</i> -orbital (b) <i>p</i> -orbital		(e) $1s^2 2s^2 2n^6 3s^2 3n^6 4s^0$
	(c) <i>d</i> -orbital (d) <i>f</i> -orbital	30	The structure of external most shell of inert gases
0.	The total number of unpaired electrons in orbitals of atoms of element of atomic number	d - 29	is [JIPMER 1991]
	is [CPMT 1983]		(a) $s^2 p^3$ (b) $s^2 p^6$
	(a) 10 (b) 1		(c) $s^1 p^2$ (d) $d^{10} s^2$
	(c) 0 (d) 5	31.	The two electrons in K sub-shell will differ in
ι.	The shape of $2p$ orbital is	5	[MNR 1988; UPSEAT 1999, 2000; Kerala PMT 2003]
	[CPMT 1983; NCERT 19	79]	(a) Principal quantum number
	(a) Spherical (b) Ellipsoidal		(b) Azimuthal quantum number
	(c) Dumb-bell (d) Pyramidal		(c) Magnetic quantum number
2.	The magnetic quantum number for an electr	ron	(d) Spin quantum number
	can have	32.	A completely filled d -orbital (d^{10}) [MNR 1987]
		841	(a) Spherically symmetrical
	(a) 3 values (b) 2 values	041	(b) Has octahedral symmetry
	(c) 9 values (d) 6 values		(c) Has tetrahedral symmetry
2.	Which one is the correct outer configuration	of	(d) Depends on the atom
, .	chromium	22	If magnetic quantum number of a given atom
	[AIIMS 1980. 91: BHU 19	95]	represented by -3 , then what will be its principal
	(a) $\uparrow \uparrow \uparrow \uparrow \uparrow$ $\uparrow \downarrow$		quantum number
	$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$		

		[BHU 2005]		(c) - 1	(d) 0
	(a) 2	(b) 3	42.	The maximum numbe	er of electrons that can be
	(c) 4	(d) 5		accommodated in the	M th shell is
34.	The total number of	orbitals in an energy level		(a) 2	(b) 8
	designated by principal quantum number <i>n</i> is equal to [AIIMS 1997; J&K CET 2005]			(c) 18	(d) 32
			43.	For a given value o number of allowed val	f quantum number <i>l</i> , the ues of <i>m</i> is given by
	(a) 2 <i>n</i>	(b) $2n^2$		(a) $l+2$	(b) $2l+2$
	(c) n	(d) n^2		(c) $2l+1$	(d) <i>l</i> +1
35.	The number of orbit quantum number will	als in the fourth principal be	44.	The number of radial are respectively.	nodes of 3s and 2p orbitals [IIT-JEE 2005]
	(a) 4	(b) 8		(a) 2, 0	(b) 0, 2
	(C) 12	(d) 16		(c) 1, 2	(d) 2, 1
36.	Which set of quantum numbers are not possible from the following		45.	Which of the sub-shell is circular	
				(a) 4 <i>s</i>	(b) 4 <i>f</i>
	(a) $n = 3, l = 2, m = 0, s =$	$-\frac{1}{2}$		(c) 4 <i>p</i>	(d) 4 <i>d</i>
	(b) $n = 3, l = 2, m = -2, s =$	$=-\frac{1}{2}$	46.	Which electronic con correct according to H	nfiguration for oxygen is und's rule of multiplicity
	(c) $n = 3, l = 3, m = -3, s = -3$	= - 1		(a) $1s^2, 2s^2 2p_x^2 2p_y^1 2p_z^1$	(b) $1s^2, 2s^2 2p_x^2 2p_y^2 2p_z^0$
		2 1		(c) $1s^2, 2s^2 2p_x^3 2p_y^1 2p_z^0$	(d) None of these
	(d) $n = 3, l = 0, m = 0, s =$	$-\overline{2}$	47.	If value of azimuthal q	uantum number l is 2, then
37.	The four quantum nu	mber for the valence shell		total possible values o	f magnetic quantum number
	electron or last electro	on of sodium (Z = 11) is[MP PN	IT 1999	will be	
	(a) $n = 2, l = 1, m = -1, s =$	_1		(a) 7	(b) 5
	2		-	(c) 3	(d) 2
	(b) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$		48.	The type of orbitals pr	resent in Fe is
		2		(a) s	(b) s and p
	(c) $n = 3, l = 2, m = -2, s =$	$=-\frac{1}{2}$		(c) s, p and d	(d) s, p, d and f
		1	49.	The shape of d_{xy} orbit	al will be
	(u) $n = 3, l = 2, m = 2, s =$	$+\frac{1}{2}$		(a) Circular	(b) Dumb-bell
38.	The explanation fo	r the presence of three		(c) Double dumb-bell	(d) Trigonal
	unpaired electrons in	the nitrogen atom can be	50	In any atom which sul	o-shell will have the highest

unpaired electrons in the nitrogen atom can be given by

[NCERT 1979; RPMT 1999; DCE 1999, 2002; CPMT 2001; MP PMT 2002; Pb. PMT / CET 2002]

- (a) Pauli's exclusion principle
- (b) Hund's rule
- (c) Aufbau's principle
- (d) Uncertainty principle
- **39.** The maximum energy is present in any electron at
 - (a) Nucleus
 - (b) Ground state
 - (c) First excited state
 - (d) Infinite distance from the nucleus
- 40. The electron density between 1s and 2s orbital is(a) High(b) Low
 - (c) Zero (d) None of these
- **41.** For *ns* orbital, the magnetic quantum number has value
 - (a) 2 (b) 4

- **50.** In any atom which sub-shell will have the highest energy in the following
 - (a) 3*p* (b) 3*d* (c) 4*s* (d) 3*s*
 - (c) 4s (d) 5s
- **51.** Which electronic configuration is not observing the (n+l) rule
 - (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^1, 4s^2$
 - (b) $1s^2, 2s^2sp^6, 3s^23p^63d^7, 4s^2$
 - (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$
 - (d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^8, 4s^2$
- 52. The four quantum numbers of the outermost orbital of K (atomic no. =19) are[MP PET 1993, 94]

(a)
$$n = 2, l = 0, m = 0, s = +\frac{1}{2}$$

(b) $n = 4, l = 0, m = 0, s = +\frac{1}{2}$
(c) $n = 3, l = 1, m = 1, s = +\frac{1}{2}$

	(d) $n = 4, l = 2, m = -1, s = +\frac{1}{2}$	$\frac{1}{2}$	62
53.	The angular momentum o	of an electron depends on	02.
	10.81]	[BHU 1978; NCERT	
	(a) Principal quantum nu	mber	
	(b) Azimuthal quantum n	umber	63.
	(c) Magnetic quantum nu	ımber	• 5.
	(d) All of these		
54.	The electronic configurat	ion of copper $(_{29}Cu)$ is	
	[DPMT 19	983; BHU 1980; AFMC 1981;	
	CBS (a) $1z^2 2z^2 2z^6 2z^2 2z^6 2z^9$	E PMT 1991; MP PMT 1995]	
	(a) $1s^{2}, 2s^{2}, 2p^{2}, 3s^{3}, 5p^{3}, 3a^{3}, 3a^{3}, 3a^{3}, 5a^{3}, $	45	
	(b) $1s^2, 2s^2 2p^0, 3s^2 3p^0 3d^{10},$	4 <i>s</i> ¹	64.
	(c) $1s^2 \cdot 2s^2 \cdot 2p^6 \cdot 3s^2 \cdot 3p^6 \cdot 4s^2 \cdot 4s^2$	$4p^{6}$	
	(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$		nota
55.	The number of orbitals in	2p sub-shell is	pota
	[]	NCERT 1973; MP PMT 1996]	6-
	(a) 6	(b) 2	05.
-	(c) 3	(d) 4	
56.	The number of orbitals in	d sub-shell is[MNR 1981]	
	(a) I	(0) 3 (d) 7	66.
57.	A sub-shell $l=2$ can take	how many electrons	
5/•	i = 2 can take	[NCERT 1973, 78]	
	(a) 3	(b) 10	
	(c) 5	(d) 6	67.
58.	58. Pauli's exclusion principle states that		
		[MNR 1983; AMU 1984]	
	(a) Two electrons in the same energy	same atom can have the	
	(b) Two electrons in the the same spin	same atom cannot have	68.
	(c) The electrons tend to as far as possible	occupy different orbitals	
	(d) Electrons tend to occu preferentially	apy lower energy orbitals	
	(e) None of the above		
59.	For d electrons, the azim	uthal quantum number is	
	(a) 0	(b) 1	
	(c) 2	(d) 3	69.
60.	For p -orbital, the magned value	etic quantum number has	
	(a) 2	(b) 4, - 4	
	(c) - 1, 0, +1	(d) 0	
61	For $n = 3$ energy lovel	the number of possible	

61. For n = 3 energy level, the number of possible orbitals (all kinds) are[BHU 1981; CPMT 1985; MP PMT 1995]
(a) 1 (b) 3

Structure of atom 63

(d) 9

Which of the following ions is not having the configuration of neon

(a)	F^{-}	(b)	Mg^{+2}
·/	-	(-)	

(c) Na^+ (d) Cl^-

(c) 4

3. Elements upto atomic number 103 have been synthesized and studied. If a newly discovered element is found to have an atomic number 106, its electronic configuration will be

[AIIMS 1980]

(a) $[Rn]5f^{14},6d^4,7s^2$	(b) $[Rn]5f^{14}, 6d^1, 7s^27p^3$
(c) $[Rn]5f^{14},6d^6,7s^0$	(d) $[Rn]5f^{14}, 6d^5, 7s^1$

64. Ions which have the same electronic configuration are those of

(a) Lithium and sodium (b) Sodium and obtassium

(c) Potassium and calcium (d)Oxygen and chlorine

. When the azimuthal quantum number has a value of l = 0, the shape of the orbital is [MP PET 1995]

- (c) Dumbbell (d) Unsymmetrical
- 66. The magnetic quantum number for valency electrons of sodium is [CPMT 1988; MH CET 1999]

(a) 3	(b) 2

- (c) 1 (d) 0
- 7. The electronic configuration of an element with atomic number 7 *i.e.* nitrogen atom is[CPMT 1982, 84, 87]

(a)
$$1s^2, 2s^1, 2p_x^3$$
 (b) $1s^2, 2s^2 2p_x^2 2p_x^2$

- (c) $1s^2 \cdot 2s^2 2p_x^1 2p_y^1 2p_z^1$ (d) $1s^2 \cdot 2s^2 2p_x^1 2p_y^2$
- 8. In a multi-electron atom, which of the following orbitals described by the three quantum members will have the same energy in the absence of magnetic and electric fields

[AIEEE 2005]

(1) $n=1, l=0, m=0$	(2) $n = 2, l = 0, m = 0$
(3) $n = 2, l = 1, m = 1$	(4) $n = 3, l = 2, m = 0$
(5) $n = 3, l = 2, m = 0$	
(a) (1) and (2)	(b) (2) and (3)
(c) (3) and (4)	(d) (4) and (5)

Which of the following represents the electronic configuration of an element with atomic number 17

	[AMU 1982]
(a) $1s^2, 2s^2 2p^6, 3s^1 3p^6$	(b) $1s^2, 2s^2 2p^6, 3s^2 3p^4, 4s^1$
(c) $1s^2, 2s^2 2p^6, 3s^2 3p^5$	(d) $1s^2, 2s^2 2p^6, 3s^1 3p^4, 4s^2$
The shape of <i>s</i> -orbital is	[NCERT 1978I]
(a) Pyramidal	(b) Spherical

	(c) Tetrahedral (d) Dumb-bell shaped	7 9 .	Krypton $(_{36}$ Kr) has the electronic configuration
71.	When $3d$ orbital is complete, the new electron		$(_{18} Ar) 4s^2, 3d^{10}, 4p^6$. The 37 th electron will go into
	will enter the		which one of the following sub-levels
	[EAMCET 1980; MP PMT 1995]		[CBSE PMT 1989; CPMT 1989; EAMCET 1991]
	(a) $4p$ -orbital (b) $4f$ -orbital		(a) 4f (b) 4d
	(c) 4_s -orbital (d) 4_d -orbital		(c) 3 <i>p</i> (d) 5 <i>s</i>
72.	In a potassium atom, electronic energy levels are in the following order [EAMCET 1979; DPMT 1991]	80.	If an electron has spin quantum number of $+\frac{1}{2}$
	(a) $4s > 3d$ (b) $4s > 4p$ (c) $4s < 3d$ (d) $4s < 3p$		and a magnetic quantum number of -1, it cannot be presented in an [CBSE PMT 1989; UPSEAT 2001]
73.	F_{e} (atomic number = 26) atom has the electronic		(a) d -orbital (b) f -orbital
/3.	arrangement [NCERT 1974; MNR 1980]		(c) <i>p</i> -orbital (d) <i>s</i> -orbital
	(a) 2, 8, 8, 8 (b) 2, 8, 16	81.	The azimuthal quantum number is related to
	(c) 2, 8,14, 2 (d) 2, 8, 12, 4		[BHU 1987, 95]
74.	<i>Cu</i> ²⁺ will have the following electronic configuration		(a) Size (b) Shape (c) Orientation (d) Spin
	[MP PMT 1985]	82.	The total number of electrons that can be
	(a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$		accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum
	(b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9, 4s^4$		number 1 is [CPMT 1971, 89, 91]
	(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^9$		(a) 2 (b) 4
	(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}, 4s^1$		(c) 6 (d) 8
75.	Which one is the electronic configuration of Fe^{+2}		Electronic configuration of <i>C</i> is [CPMT 1975]
/3.	[MADT Bihar 1982: AIIMS 1989]		(a) $1s^2, 2s^2 2p^2$ (b) $1s^2, 2s^2 2p^3$
	(a) $1s^2 \cdot 2s^2 2p^6 \cdot 3s^2 3p^6 \cdot 3d^6$		(c) $1s^2, 2s^2$ (d) $1s^2, 2s^2 2p^6$
	(b) $1c^2 2c^2 2n^6 3c^2 3n^6 3d^4 4c^2$	84.	There is no difference between a $2p$ and a
	(0) 13, 25, 2p, 55, 5p, 5u, 45		3 <i>p</i> orbital regarding [BHU 1981]
	(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6, 4s^4$		(a) Shape (b) Size
_	(d) None of these		(c) Energy (d) Value of <i>n</i>
76.	How many electrons can be fit into the orbitals		The electronic configuration of chromium is
	that comprise the 3^{n} quantum shell $n = 3$		[MP PMT 1993; MP PET 1995; BHU 2001; BCECE 2005]
	[MP PM1 1986, 87, 01155a] EE 1997] (a) 2 (b) 8		(a) $[Ne]3s^23p^63d^4, 4s^2$ (b) $[Ne]3s^23p^63d^5, 4s^1$
	(c) 18 (d) 32		(c) $[Ne]3s^23p^6, 4s^24p^4$ (d) $[Ne]3s^23p^63d^1, 4s^24p^3$
77.	Which element is represented by the following	86.	The shape of <i>p</i> -orbital is [MP PMT 1993]
	electronic configuration [MP PMT 1987]		(a) Elliptical (b) Spherical
	2 <i>p</i>		(c) Dumb-bell (d) Complex geometrical
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	87.	The electronic configuration (outermost) of Mn^{+2} ion (atomic number of $Mn = 25$) in its ground state is
			[MP PET 1993]
	(a) Nitrogen (b) Oxygen		(a) $3d^5, 4s^0$ (b) $3d^4, 4s^1$
~	(c) Fluorine (d) Neon		(c) $3d^3, 4s^2$ (d) $3d^2, 4s^24p^2$
78.	If the value of azimuthal quantum number is 3, the possible values of magnetic quantum number would be		The principal quantum number represents [CPMT 1991]
			(a) Shape of an orbital
	[MP PMT 1987; RPMT 1999; AFMC 2002; KCET 2002]		(b) Distance of electron from nucleus
	(a) 0, 1, 2, 3 (b) 0, -1, -2, -3		(c) Number of electrons in an orbit
	(c) 0, ± 1 , ± 2 , ± 3 (d) ± 1 , ± 2 , ± 3		(d) Number of orbitals in an orbit

89.	89. When the azimuthal quantum number has a of l = 1, the shape of the orbital is [MP PE'	
	(a) Unsymmetrical	(b) Spherically
sym	metrical	
	(c) Dumb-bell	(d) Complicated
90.	90. How many electrons can be accommodated sub-shell for which $n = 3, l = 1$ [CBSE PMT]	
	(a) 8	(b) 6
	(c) 18	(d) 32
91.	For azimuthal o maximum number	quantum number $l=3$, the of electrons will be
	EAMCET 1	991; RPMT 2002; CBSE PMT 2002]
	(a) 2	(b) 6
	(c) 0	(d) 14
92.	An ion has 18 elec is	trons in the outermost shell, it
		[CBSE PMT 1990]
	(a) <i>Cu</i> ⁺	(b) <i>Th</i> ⁴⁺
	(c) Cs ⁺	(d) K ⁺
93.	The order of filling an atom will be	g of electrons in the orbitals of
	(a) 3 <i>d</i> ,4 <i>s</i> ,4 <i>p</i> ,4 <i>d</i> ,5 <i>s</i>	(b) $4s, 3d, 4p, 5s, 4d$

- (c) 5s,4p,3d,4d,5s (d) 3d,4p,4s,4d,5s
- 94. The quantum number which may be designated by s, p,d and f instead of number is BHU 1980]

(a)	n	(b)	l
(c)	m_l	(d)	m_s

95. Which of the following represents the correct sets of the four quantum numbers of a 4d electron [MNR 1992; UPSEAT 2001; J&K CET 2005]

(a)
$$4,3,2,\frac{1}{2}$$
 (b) $4, 2, 1, 0$
(c) $4,3,-2,+\frac{1}{2}$ (d) $4,2,1,-\frac{1}{2}$

96. Which of the following statements is not correct for an electron that has the quantum numbers n = 4 and m = 2

[MNR 1993]

- (a) The electron may have the quantum number $\frac{1}{2}$
- $s = +\frac{1}{2}$
- (b) The electron may have the quantum number $l\!=\!2$
- (c) The electron may have the quantum number l=3
 - (d) The electron may have the quantum number l = 0, 1, 2, 3
- 97. The set of quantum numbers not applicable for an electron in an atom is [MNR 1994]
 (a) n=1,l=1,m_l=1,m_s=+1/2

(b)
$$n = 1, l = 0, m_l = 0, m_s = +1/2$$

- -----
- (c) $n = 1, l = 0, m_l = 0, m_s = -1/2$ (d) $n = 2, l = 0, m_l = 0, m_s = +1/2$ **98.** Correct configuration of Fe^{+3} [26] is [CPMT 1994; BHU 1995; KCET 1992]
 - (a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5$
 - (b) $1s^2, 2s^2sp^6, 3s^23p^63d^3, 4s^2$
 - (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6, 4s^2$
 - (d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^5, 4s^1$

99. Azimuthal quantum number for last electron of ICBSE PMT 1991; Na atom is

[BHU 1995]

[IIT 1995]

- (a) 1 (b) 2
- (c) 3 (d) 0
- **100.** A 3*p* orbital has
 - (a) Two spherical nodes
 - (b) Two non-spherical nodes
 - (c) One spherical and one non-spherical nodes
 - (d) One spherical and two non-spherical nodes
- 101. All electrons on the 4p sub-shell must be [CESEFAFACTE1922] by the quantum number(s)[MP PET 1996]

(a)
$$n = 4, m = 0, s = \pm \frac{1}{2}$$
 (b) $l = 1$
(c) $l = 0, s = \pm \frac{1}{2}$ (d) $s = \pm \frac{1}{2}$

- **102.** The electronic configuration of the element of atomic number 27 is
 - (a) $1s^2, 2s^22p^6, 3s^23p^6, 4s(\uparrow\downarrow) 4p(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow) 5s(\uparrow)$
 - **(b)** $1s^2$, $2s^2 2p^6$, $3s^2 3p^6 3d (\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)$, $4s (\uparrow\downarrow) 4p (\uparrow)$
 - (c) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 3d (\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow\downarrow), 4s (\uparrow)$
 - (d) $1s^2$, $2s^2 2p^6$, $3s^2 3p^6$, $3d(\uparrow\downarrow)(\uparrow\downarrow)(\uparrow)(\uparrow)(\uparrow)(4s(\uparrow\downarrow))$
- **103.** When the value of the principal quantum number n is 3, the permitted values of the azimuthal quantum numbers l and the magnetic quantum numbers m, are

l	m
0	0
(a) 1	+1, 0, -1
2	+ 2,+1, 0, -1, -2
1	1
(b) 2	+2, 1, -1
3	+ 3,+2, 1, - 2, -3
0	0
(c) 1	1, 2, 3
2	+3, +2, 1, -2, -3
1	0, 1
(d) 2	0, 1, 2
3	0, 1, 2, 3

104. The number of possible spatial orientations of an electron in an atom is given by its

	(a) Spin quantum numb		(c) Magnetic quantum number							
	(b) Spin angular momen	itum		(d) Spin	quant	um num	ber			
	(c) Magnetic quantum n	umber	113.	For the	n = 2	energy 2	level, ho	w man	y orbit	als of
	(d) Orbital angular mon	nentum		all kinds	are p	ossible		[Bil	har CEE	1995]
105.	Which of the followin	ng sets of orbitals may		(a) 2			(b) 3			
	degenerate	(\mathbf{b}) 2 2 2 1		(c) 4			(d) 5			
	(a) $2s, 2p_x, 2p_y$	(b) $3s, 3p_x, 3d_{xy}$	114.	Which or	ne is i	n the gro	ound sta	te	[DPMT	1996]
	(c) $1s, 2s, 3s$	(d) $2p_x, 2p_y, 2p_z$					1			
106.	The set of $n = 3, l = 0, m = 0, s = -1/2$	quantum numbers belongs to the element		(a	↑	\uparrow \uparrow	1			
	(a) <i>Mg</i>	(b) <i>Na</i>) [↑↓						
	(c) <i>Ne</i>	(d) <i>F</i>		1.4						
107.	An electron has principa number of its (i) sub-she	al quantum number 3. The ells and (ii) orbitals would		(b)	$\uparrow\downarrow$	$\uparrow \uparrow$				
	be respectively	[MP PET 1007]		$\uparrow \downarrow$						
	(a) 3 and 5	(b) 3 and 7					\uparrow			
	(c) 3 and 9	(d) 2 and 5		(c	\uparrow	\uparrow \uparrow			l	
108.	What is the elect	ronic configuration of)						
	$Cu^{2+}(Z = 29)$ of least pos	ition[MP PET/PMT 1998; MP	PET 200	D1] 1						
	(a) $[Ar]4s^13d^8$	(b) $[Ar]4s^2 3d^{10} 4p^1$			_		\uparrow			
	(c) $[Ar]4s^1 3d^{10}$	(d) $[Ar]3d^9$		(d)	Ť	ΤT				
109.	The correct electronic of	configuration of $Ti(Z = 22)$, 						
	atom is							_		_
		[MP PMT 1999]	115.	When th	e prii	ncipal qu	uantum	number	n = 3), the
	(a) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$3d^2$		possible	value	s of azin	nuthal q	uantum	numb	er (1)
	(b) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$			15			[Bihar M	EE 1996	: ксет	2000]
	(c) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$			(a) 0, 1,	2, 3		(b) o	, 1, 2	,	•
	(d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	$3d^3$		(c) - 2,	- 1, C), 1, 2	(d) 1,	2, 3		
110.	Which of the following o	configuration is correct for	116	(e) 0, 1	atom	nt is no	taannaat	for	5	2
	iron	5	116.	which st	ateme	ent is no	l correct	$n = 101^{\circ} n =$	= 5 , <i>m</i> =	=) 1006]
		[CBSE PMT 1999]							1	1990]
	(a) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5$			(a) $l = 4$			(b) <i>l</i>	= 0, 1, 3; s	$r = +\frac{1}{2}$	
	(b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$3d^5$		(c) $l = 3$			(d) A	ll are co	orrect	
	(c) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$3d^7$	117.	$1s^2 2s^2 2p$	$p^6 3s^1$	shows c	onfigura	ution of	[СРМТ	1996]
	(d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$	$3d^6$		(a) Al ³⁺	in gro	ound sta	te (b) /	<i>le</i> in ex	cited st	tate
111.	Which of the following	set of quantum numbers		(c) Mg^+	in exe	cited sta	te (d) N	one of t	these	
	belong to highest energy	/ [CPMT 1999]	118.	Five vale	ence e	lectrons	of p^{15} a	re label	lled as	
	(a) $n = 4, l = 0, m = 0, s = +$	$\frac{1}{2}$		AF	3	X	Y	Z		
		2		35	;		30			
	(b) $n = 3, l = 0, m = 0, s = +$	$\frac{1}{2}$		0			51		1	
		2		If the sp	in qua	antum of	B and	Z is +	$\frac{1}{2}$, the	group
	(c) $n = 3, l = 1, m = 1, s = +-$	$\frac{1}{2}$		of electr	ons v	vith thre	ee of th	e quan	- tum nu	mber
		-		same are	9			_		
	(d) $n = 3, l = 2, m = 1, s = +$	<u>.</u>				_		Ľ	JIPMER	1997]
112	Which quantum number	will determine the shape		(a) AB, X	XYZ, BY		(b) A	В		
	of the subshell	[CPMT 1999; Pb. PMT 1998]		(c) <i>XYZ</i> ,	ΑZ		(d) A	B, XYZ		
	(a) Principal quantum n	umber	119.	Electron	nic cor	nfigurati	on of Sc	21 is	[BHU	1997]
	(b) Azimuthal quantum	number		(a) $1s^2 2s^2$	$s^2 2p^6$	$3s^2 3p^6 4s$	$s^2 3d^1$			

(b) Azimuthal quantum number

				St	ructure of atom 67
	(b) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$	3 <i>d</i> ²	128.	. Which one of the	e following set of quantum
	(c) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^6$	$^{\circ}3d^{3}$		numbers is not poss	ible for 4 <i>p</i> electron[EAMCET 19
	(d) $1s^2 2s^2 2n^6 3s^2 3n^2 4s^2$	$^{2}3d^{2}$		(a) $n = 4, l = 1, m = -1, m $	$s = +\frac{1}{2}$
120.	If $n+l=6$, then to	tal possible number of			2
120.	subshells would be	[RPMT 1997]		(b) $n = 4, l = 1, m = 0, s$	$s = +\frac{1}{2}$
	(a) 3	(b) 4			1
	(c) 2	(d) 5		(c) $n = 4, l = 1, m = 2, s$	$s = +\frac{1}{2}$
121.	An electron having	the quantum numbers		(d) $n = 4 l = 1 m = -1$	a – 1
	$n = 4, l = 3, m = 0$, $s = -\frac{1}{2}$	would be in the orbital		(u) $n = 4, l = 1, m = -1,$	$s = +\frac{1}{2}$
	2		129.	Which of the follow	ing orbital is not possible[RPMT
	(\mathbf{a}) \mathbf{a}	[Orissa JEE 1997]		(a) $3f$	(b) $4f$
	(a) 3s	(b) 3p	130.	Which set of quant	im numbers for an electron of
	(c) 4 <i>d</i>	(d) 4 <i>f</i>		an atom is not possi	ble [RPMT; DCE 1999]
122.	Which of the following	sets of quantum numbers		(a) $n = 1, l = 0, m = 0, s$	=+1/2
	is not allowed	[Orissa JEE 1997]		(b) $n = 1, l = 1, m = 1, s$	= +1/2
	(a) $n = 1, l = 0, m = 0, s = +$	$\frac{1}{2}$		(c) $n = 1, l = 0, m = 0, s$	= -1/2
		1		(d) $n = 2, l = 1, m = -1,$	s = +1/2
	(b) $n = 1, l = 1, m = 0, s = -$	$\frac{1}{2}$	131.	Electronic configura	tion of ferric ion is[RPET 2000]
		1		(a) $[Ar] 3d^5$	(b) $[Ar]3d'$
	(c) $n = 2, l = 1, m = 1, s = +$	$\frac{1}{2}$		(c) $[Ar] 3d^3$	(d) $[Ar] 3d^8$
	(d) $n = 2, l = 1, m = 0, s = -$	$\frac{1}{2}$	132.	What is the maximu can be accommoda	um number of electrons which ted in an atom in which the
123.	For which of the follow	wing sets of four quantum		(a) 10	(b) 18
0	numbers, an electron w	ill have the highest energy[C	BSE PN	AEC (\$)9343	(d) 54
	n l m	S	133.	Which of the follow	ing electronic configurations is
	(a) 3 2 1	+1/2		not possible	[CPMT 2000]
	(b) 4 2 1	+1/2		(a) $1s^2 2s^2$	(b) $1s^2 2s^2 2p^6$
	(c) 4 1 0	-1/2		(c) $3d^{10}4s^24p^2$	(d) $1s^2 2s^2 2p^2 3s^1$
	(d) 5 0 0	-1/2	134.	The electronic cor	figuration of an element is
124.	The electronic confi (atomic no. 64) is	guration of gadolinium	[1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 3 <i>d</i> ⁵ 4 CBSE PMT 1997]	<i>s</i> ¹ . This represents its [IIT Screening 2000]
	(a) $[Xe]4s^85d^96s^2$	(b) $[Xe]4s^7 5d^1 6s^2$		(a) Excited state	(b) Ground state
	(c) $[Xe]4s^35d^56s^2$	(d) $[Xe]4f^{6}5d^{2}6s^{2}$	125	(c) Cationic form	(d) Anionic form
125	An a^- has magnetic our	ntum number ac 3 what	135.	possible	ing set of quantum numbers is
125.	is its principal quantum	number [BHU 1998]		1	[AIIMS 2001]
	(a) 1	(b) 2		(a) $n = 3; l = 2; m = 2$	and $s = +\frac{1}{2}$
	(c) 3	(d) 4			2
126.	The number of quant	um numbers required to		(b) $n = 3; l = 4; m = 0$	and $s = -\frac{1}{2}$
	describe an electron in	an atom completely is[CET Pu	ine 199	8]	- -
	(a) 1	(b) 2		(c) $n = 4; l = 0; m = 2$	and $s = +\frac{1}{2}$
	(c) 3	(d) 4		(d) $n = 4; l = 4; m = 3$	and $s = +\frac{1}{2}$
127.	The electronic configura	ation $1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$			2
	[AFMC 1997; Pb. PMT 1999	; CBSE PMT 2001; AIIMS 2001]	136.	Which of the follow	ring set of quantum number is
	(a) Oxygen	(b) Nitrogen		not vallu	[AIIMS 2001]
	(c) Hydrogen	(d) Fluorine		(a) $n = 1, l = 2$	(b) $3 = 2, m = 1$

(a) n = 1, l = 2(b) 3 = 2, m = 1(c) m = 3, l = 0(d) 3 = 4, l = 2

137.	Which one pair configuration	of atoms	or ions	will have same [JIPMER 2001]						
	(a) F^+ and Ne	(b) Li^+ at	nd He -		(c)				
	(c) Cl^- and Ar	(d) <i>Na</i> a	nd K		(0)				
138.	Which of the fol	llowing se	ts of qua	ntum number is						
0	not possible	0	1	[MP PET 2001]		(d)				
	(a) $n = 3 \cdot l = \pm 2 \cdot m$	-0.5 - 1				(u)				
	(a) $n = 3, i = \pm 2, m$	$1 = 0, s = +\frac{-}{2}$	-		146.	The to	tal magnet	ic quan	um numbers	s for <i>d</i> -orbital
	(b) $n = 2 \cdot l = 0$	1				is give	en by			
	(b) $n = 3, t = 0, m$	$-0, s - \frac{-1}{2}$				(a) 2			(b) 0, \pm 1, \pm	2
	(c) $n = 3 \cdot l = 0 \cdot m$	$-1 \cdot c - + \frac{1}{2}$	<u> </u>			(c) 0,	1, 2		(d) 5	
	(c) $n = 3, i = 0, m$	- 1,3 - 1	2		147.	The ou	iter electro	onic stru	cture $3s^23p^5$	is possessed
	(d) $n = 3 \cdot l = 1 \cdot m$	$= 0: s = -\frac{1}{2}$				by				
	(u) n 3,1 1,m	2						[P	b. PMT 2002;	Pb. CET 2001]
139.	Which of the fol	llowing se	t of quar	tum numbers is		(a) <i>Cl</i>			(b) <i>O</i>	
	correct for the 1	9 th electro	on of chro	omium [DCE 2001]		(c) <i>Ar</i>			(d) <i>Br</i>	
	n	L	m	S	148.	Which	of the fol	lowing s	set of quantu	im number is
	(a) 3	0	0	1/2		not po	ssible	,	L	PD. PMI 2002]
	(b) 3	2	- 2	1/2			n	l	m_1	m_2
	(c) 4	0	0	1/2		(a)	3	2	1	+ 1/2
	(d) 4	1	-1	1/2		(b)	3	2	1	- 1/2
						(c)	3	2	1	0
140.	When the value	of azimu	thal qua	ntum number is	0001]	(d)	5	2	- 1	+ 1/2
	$(2) \pm 1 0 = 1$	IIIuiii Iiuiii			149.	The co	onfiguratio	n $1s^2, 2s$	$22p^5, 3s^1$ sho	ws[Pb. PMT 2002]
	(b) + 2, + 1, 0, -	1, - 2				(a) Fx	cited state	of 0^{-}		
	(c) - 3, - 2, - 1,	- 0, + 1, +	2, + 3			(u) Ex	sited state			
	(d) + 1, - 1					(D) EX	cited state	or neon	•	
141.	The quantum nu	mbers n =	= 2, l = 1 r	epresent [AFMC 20	02]	(C) EX	cited state	of fluor	ine	
	(a) 1 <i>s</i> orbital	(b) 2 <i>s</i> orl	oital		(d) Gr	ound state	of fluor	ine atom	
	(c) 2 <i>p</i> orbital	(d) 3 <i>d</i> orl	oital	150.	associ	lantum nui ated with	mber ·m	of a free ga	seous atom 1s
142.	The magnetic	quantum	n numb	er of valence		(a) Th	acca with	volume	of the orbit:	
	electron of sodiu	um (Na) is	;		[]	(b) Th	002]	the orb	tal	
	(a) 3	(b) 2			(c) Th	e snape of	riontati	nai	ital
	(c) 1	. (d) 0			(d) Th	e energy (of the o	rhital in the	absence of a
143.	Azimuthal quant	tum numb	er define	S [AIIMS 2002]		ma	agnetic fiel	.d	ibitar in the	absence of a
	(a) e/m ratio of (b) Spin of elect	ron			151.	Correc	t statemen	it is		[BHU 2003]
	(c) Angular mor	nentum of	electror	1	•	(a) K	$-4s^1$ Cr -1	$3d^4 4s^2$	$Cu = 3d^{10} 4s^2$	
	(d) Magnetic mo	omentum o	of electro	n		(u) II	2	<i>.</i>	10 2	
144.	Quantum numbe	ers of an	atom ca	n be defined on		(b) <i>K</i>	$=4s^{2}, Cr =$	$3d^{4}4s^{2}$,	$Cu = 3d^{10} 4s^2$	
	the basis of				[4	NIN S Ko	(c, c, c	$3d^5 4s^1$,	$Cu = 3d^{10} 4s^2$	
	(a) Hund's rule					(d) <i>K</i>	$=4s^{1}, Cr = 3$	$3d^54s^1$,	$Cu = 3d^{10} 4s^1$	
	(b) Aufbau's pri	nciple	inlo		152.	Numb	er of orbita	ats in <i>h</i> s	sub-shell is	[BHU 2003]
	(d) Heisenberg'	s uncertai	nty princ	inle	•	(a) 11			(b) 15	
145.	Which of the fol	lowing ha	s maxim	um energy		(c) 17			(d) 19	
10	35 30	0	3d	[AIIMS 2002]	153.	Electro	onic config	uration		
				 -		$1s^2.2s^3$	$22p^{6}.3s^{2}3p$	$6^{6}3d^{5}.4s$	ⁱ represents	[CPMT 2003]
	(a)					(a) Cm	-r , ex er	,	(b) Evolted	
	20 20		ad			(a) Gr	ound state		(D) Excited	state
	3s 3p		зи			(c) An	nome state		(u) All of th	ese
	(b) 1 1 1	1 1 1								
	20 2n		Зd							
	3s 3p		3d							
		1 1 1		7						

	Mathiah of the Cell :	na esta la norrible (46-	The electronic or C	mation - C	alamant!+1-
154.	quantum numbers	ng sets is possible for	162.	atomic number 24 is	iration of	element with [Pb. CET 2004]
		[RPET 2003]		(a) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^4$	$^{4},4s^{2}$	
	(a) $n = 4, l = 3, m = -2, s = 0$			(b) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^{10}$)	
	(b) $n = 4, l = 4, m = +2, s = -$	$-\frac{1}{2}$		(c) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6$	5	
		2		(d) $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^4$	$54s^{1}$	
	(c) $n = 4, l = 4, m = -2, s = +$	$-\frac{1}{2}$	163.	The maximum number	of electron	s in p -orbital
		1		with $n = 5, m = 1$ is		[Pb. CET 2003]
	(d) $n = 4, l = 3, m = -2, s = +$	$-\frac{1}{2}$		(a) 6	(b) 2	
155.	For principle quantum	number $n = 4$ the total		(c) 14	(d) 10	
	number of orbitals havir	ng <i>l</i> =3 [AIIMS 2004]	164.	Number of two electron	can have t	he same values
	(a) 3	(b) 7		or quantum number	(b) Two	[UPSEAT 2004]
_	(c) 5	(d) 9		(a) One	(d) Four	
156.	The number of $2p$ elect	rons having spin quantum	165	The number of orbitals	nresent in	the shell with
	number $s = -1/2$ are	[KCET 2004]	105.	n = 4 is	present in	the shell with
	(a) 6	(b) 0 (d) a				[UPSEAT 2004]
1	(C) 2 Which of the following	(a) 3		(a) 16	(b) 8	
157.	is correct for an electror	n in 4f orbital [AIEEE 2004]		(c) 18	(d) 32	
		1	166.	Which of the following	electronic o	configuration is
	(a) $n = 4, l = 3, m = +1, s = +1$	$\frac{1}{2}$		not possible		[MHCET 2003]
		1		(a) $1s^2 2s^2$	(b) $1s^2 2s^2$	$2n^6$
	(b) $n = 4, l = 4, m = -4, s = -4$	$\overline{2}$		(a) $13 23$	(0) 13 ,23	2p
	(c) $n = 4, 1 = 2, m = +4, n = +$	1		(c) $[Ar]3d^{10}, 4s^2 4p^2$	(d) $1s^2, 2s^2$	$2p^2, 3s^2$
	(c) $n = 4, l = 5, m = +4, s = +$	$\overline{2}$	167.	p_x orbital can accommo	odate	
	(d) $n = 3 l = 2 m = -2 s = +3$	1		[MNR 1990; IIT 1983; MA	DT Bihar 199	95; BCECE 2005]
	(a) n 3,1 2,1 2,5 1	2		(a) 4 electrons		
158.	Consider the ground	state of $(Z = 24)$. The		(b) 6 electrons		
	numbers of electrons with numbers $l = 1$ and 2 are	th the azimuthal quantum		(c) 2 electrons with para	allel spins	
	(a) 16 and A	(b) 12 and 5	169	(d) 2 electrons with opp	osite spins	a that can be
	(c) 12 and 4	(d) 16 and 5	108.	accommodated in 'f' su	b shell is	is that call be
159.	The four quantum n	umbers of the valence		[CPMT 1983, 84; MF	P PET/PMT 1	988: BITS 1988]
	electron of potassium ar	e	[[DPMT_2004]	(b) 8	5,5,
	(a) 4, 1, 0 and $\frac{1}{-}$	(b) 4, 0, 1 and $\frac{1}{-}$		(c) 32	(d) 14	
	2	2	169.	The number of ele	ctrons w	hich can be
	(c) 4, 0, 0 and $+\frac{1}{2}$	(d) 4, 1, 1 and $\frac{1}{2}$		accommodated in an orb	oital is [DPM	T 1981; AFMC 1988]
	2	2		(a) One	(b) Two	
160.	Which of the following of the possible according to	electronic configuration is	۲٦	(c) Three	(d) Four	
	(a) $1s^2 2s^2$	(b) $1s^2 2s^1$	170.	The number of electro	ons in the a	tom which has
	(a) $1s^2 2s^2 2s^1 2s^1 2s^1$	(d) $1s^2 2s^2 2r^2$		(a) 20	(h) 10	1, 93, CBSE PM1 1989]
	(c) is $2s \ 2p_x 2p_y 2p_x$	(u) 1s 2s $2p_x$		(a) 20	(d) 40	
	(e) $1s^2 2s^2 2p_x^2 2p_y^1 2p_z^1$		171.	The maximum number of	of electrons	accommodated
161.	The ground state term	symbol for an electronic	1/10	in $5f$ orbitals are		[MP PET 1996]
	state is governed by	[UPSEAT 2004]		(a) 5	(b) 10	
	(a) Heisenberg's princip	le		(c) 14	(d) 18	
	(b) Hund's rule		172.	The maximum number	of electro	ns in an atom
	(c) Aufbau principle	• ,		with $l=2$ and $n=3$ is	[MP	PET/PMT 1998]
	(a) Pauli exclusion princ	cipie				

	70 Structure of at	om				
	(a) 2	(b) 6		(c) 2	(d) 3	
	(c) 12	(d) 10	184.	The number of	unpaired electro	ns in a chromic
173.	The configuration $1s^2 2s^2$	$^{2}2p^{5}3s^{1}$ shows[AIIMS 1997]		ion Cr^{3+} (atomic	number = 24) is[MNR 1986; CPMT 199
	(a) Ground state of fluo	rine atom		(a) 6	(b) 4	
	(b) Excited state of fluor	rine atom		(c) 3	(d) 1	
	(c) Excited state of neor	n atom	185.	$3d^{10}4s^0$ electron	nic configuration	exhibits by
	(d) Excited state of ion	O_{2}^{-}		(a) Zn^{++}	(b) Cu ⁺⁺	
174	For sodium atom the u	umber of electrons with		(c) Cd ⁺⁺	(d) <i>Hg</i> ⁺⁺	
1/4.	m = 0 will be		1861	Miniah999 the f	following metal er of unpaired ele	ions will have ectrons[CPMT 1996]
	(a) 2			(a) Fe^{+2}	(b) CO^{+2}	2 2 2
	(C) 9	(u) o		(a) N^{+2}	(d) $M_{\rm c}^{+2}$!
175.	The number of end d_{2}^{2} or d_{2}^{2}	bital ic	10	(C) IVI	(u) Mn	highest number
	accommodated in az of		10.19	of unpaired elect	rons	ingnest number
	(a) 10	(b) 1		(a) <i>Cu</i> ⁺	(b) Ee^{2+}	
	(c) 4	(d) 2		(a) Cu^{3+}	(b) Pe^{-2+}	
176.	Number of unpaired ele	ctrons in $1s^2 2s^2 2p^3$ is	100	(c) Fe^{-r}	$(a) Co^{2}$	d alactron can be
	[CPMT 198	82; MP PMT 1987; BHU 1987;	100.	present in <i>d</i> orbi	tals are	u electroli cali de
	CBSE PMT 1990; (CET Pune 1998; AIIMS 2000]		(a) 1	(b) 3	
	(a) 2	(b) O		(c) 5	(d) 7	
	(c) 3	(d) 1	189.	The molecule hav	ving one unpaired	d electron is
177.	Total number of unpair	ed electrons in an atom of		(a) <i>NO</i>	(b) <i>CO</i>	
	atomic number 29 is	[CPMT 1984, 93]		(c) <i>CN</i> ⁻	(d) O_2	
	(a) 1	(b) 3	190.	A filled or half-	filled set of p	or d -orbitals is
	(c) 4	(d) 2		spherically sym	metric. Point o	out the species
178.	The number of unpaired	electrons in $1s^2$, $2s^2 2p^4$ is		which has spheri	cal symmetry	
	[NCERT 1984; CPM	T 1991; MP PMT 1996, 2002]		(a) <i>Na</i>	(b) <i>C</i>	
	(a) 4	(b) 2		(c) <i>Cl</i> ⁻	(d) <i>Fe</i>	
	(c) 0	(d) 1	191.	The atom of the	element having a	tomic number 14
179.	The maximum number accommodated in a 3 <i>d</i> s	of electrons that can be subshell is		(a) One unpaired	l electron (b)T	[AMU 1984] wo unpaired electror
	(a) 2	(b) 10		(c) Three unpair	ed electrons(d)F	our unpaired electro
	(c) 6	(d) 14	192.	An atom has 2 el	ectrons in K she	ell, 8 electrons in
180.	The maximum number sub-shell can occupy is	of electrons which each [Pb. CET 1989]		L shell and 6 e. of <i>s</i> -electrons pr	resent in that elem	ment is [CPMT 1989]
	(a) $2n^2$	(b) 2 <i>n</i>		(a) U	(0) 5	
	(c) $2(2l+1)$	(d) $(2l+1)$	102	(C) 7 The number of u	(u) 10	s in carbon atom
181.	Number of unpaired ele of beryllium atom is	ctrons in the ground state	193.	in excited state i	s (b) Two	[MNR 1987]
	(a) 2	(b) 1		(a) one (c) Three	(d) Four	
	(c) 0	(d) All the above	194.	Maximum numb	er of electrons	present in 'N'
182.	How many unpaired ele cation (atomic number	ctrons are present in <i>Ni</i> ²⁺ = 28)	-54	shell is [IIT 1981; M	NR 1984;	[EAMCET 1984]
	MP F	PMT 1995; Kerala PMT 2003]		(a) 18	(b) 32	5043
	(a) 0	(b) 2		(c) 2	(d) 8	
	(c) 4	(d) 6	105	The number of	d electrons i	n Fe ⁺² (atomic
183.	The number of unpair	red electrons in an O_2	-93.	number of $Fe = 2$	6) is not equal to	that of the[MNR 199
	molecule is			(a) <i>p</i> -electrons	in <i>Ne</i> (At. No.= 2	10)
		[MNR 1983]		(b) <i>s</i> -electrons i	n Mg (At. No.= 1	.2)
	(a) 0	(b) 1		(-) = ==========	0 (,

				Str	ucture of atom 71
	(c) d -electrons in Fe			(b) The second princ	ipal energy level can have four
	(d) <i>p</i> -electrons in <i>Cl</i>	(At. No. of $Cl = 17$)		sub-energy levels	and contains a maximum of
196.	A transition metal X in its +3 oxidation sta	has a configuration $[Ar]3d^4$	E.Tejoot	(c) The <i>M</i> energy le	vel can have maximum of 32
	(a) 25	(b) 26		(d) The $4s$ sub-ener	gy level is at a higher energy
	(c) 22	(d) 19		than the $3d$ sub-	energy level
197.	The total number of	electrons present in all the	207.	The statements	[AIIMS 1982]
57	p -orbitals of bromine	are	[]	M(?i)PEIn 16jb]4jn]g a group	of orbitals of equal energy, it
	(a) Five	(b) Eighteen		is energetically	preferable to assign electrons
	(c) Seventeen	(d) Thirty five		to empty orbitals	s rather than pair them into a
198.	Which of the followin	g has the maximum number		(ii)	When two electrons are
	of unpaired electrons	[IIT 1996]		placed in two	different orbitals, energy is
	(a) Mg^{2+}	(b) Ti^{3+}		lower if the spin	s are parallel.
	(c) V^{3+}	(d) Ee^{2+}		are valid for	-
100.	Which of the follow	ing has more unpaired d -		(a) Aufbau principle	
1990	electrons	ing has more unpured a		(b) Hund's rule	
		[CBSE PMT 1999]		(c) Pauli's exclusion	principle
	(a) Zn^+	(b) Fe^{2+}		(d) Uncertainty prin	ciple
	(c) N^{3+}	(d) Cu^+	208.	According to Aufb	au's principle, which of the
200.	Maximum electrons in	d -orbital are [CPMT 1999]		three $4d,5p$ and 5	s will be filled with electrons
200.	(a) 2	(b) 10		first	[MADT Bihar 1984]
	(a) = 2	(d) 14		(a) 4 <i>d</i>	
201	The number of uppair	(u) 14 red electrons in $E_{a}^{3+}(7-26)$		(b) 5 <i>p</i>	
201.	ano	Ted electrons in $Fe^{-}(Z = 20)$		(c) 5 <i>s</i>	
	ale	[KCET 2000]		(d) $4d$ and $5s$ will be	be filled simultaneously
	(a) 5	(b) 6	209.	The energy of an ele	ctron of $2p_y$ orbital is[AMU 1984
	(a) 3	(d) 4		(a) Greater than that	t of $2p_x$ orbital
202.	How many unpaired	electrons are present in		(b) Less than that of	$2p_{\star}$ orbital
	cobalt [Co] metal	[RPMT 2002]		(c) Found to that of	2° orbital
	(a) 2	(b) 3		(d) Same as that of <i>i</i>	2n orbital
	(c) 4	(d) 7		(d) ballie as that of a	
203.	The number of unpaire	d electrons in nitrogen is	210.	maximum number (of electrons in an orbital to
		[Pb. CET 2002]		two[CBSE PMT 1989]	si ciccitons in un orbitar to
	(a) 1	(b) 3		(a) Aufbau principle	
	(c) 2	(d) None of these		(b) Pauli's exclusion	principle
204.	Which of the followin	g has the least energy		(c) Hund's rule of m	aximum multiplicity
	(a) 2 <i>p</i>	(b) 3 <i>p</i>		(d) Heisenberg's und	certainty principle
	(c) 2 <i>s</i>	(d) 4 <i>d</i>	211.	The electrons would	ld go to lower energy levels
205.	Pauli's exclusion prin	ciple states that[CPMT 1983, 84]		first and then to high	her energy levels according to
	(a) Nucleus of an a	tom contains no negative		which of the following	
charg	ge			(a) Aufhau principle	[BHU 1990; MP PM1 1993]
nucle	(b) Electrons move in	i circular orbits around the		(b) Pauli's exclusion	principle
nucle	(c) Flectrons occurs	orbitals of lowest energy		(c) Hund's rule of m	aximum multiplicity
	(d) All the four of	uantum numbers of two		(d) Heisenberg's und	certainty principle
	electrons in an ato	om cannot be equal	212.	Energy of atomic orb	pitals in a particular shell is in
206.	For the energy levels	in an atom, which one of the		the order	• • • • • • • • • • • • • • • • • • • •
	following statements	is correct [AIIMS 1983]			[AFMC 1990]
	(a) There are seven	principal electron energy		(a) <i>s</i> < <i>p</i> < <i>d</i> < <i>f</i>	(b) $s > p > d > f$
level	S			(c) $p < d < f < s$	(d) $f > d > s > p$

213. Aufbau principle is not satisfied by [MP PMT 1997]

	72 Structure of a	tom			
	(a) Cr and Cl	(b) Cu and Ag		(c) $\sqrt{2} \frac{h}{2\pi}$	(d) Zero
	(c) Cr allu Mg	(d) Cu and Na	225	The maximum num	ber of electrons present in an
214.	filling the electrons in	g explains the sequence of different shells[AIIMS 1998: B	HU 199	$_{\mathbf{q}}$ prbit $l=3$, is	[Pb. PMT 2004]
	(a) Hund's rule	(b) Octet rule		(a) 6	(b) 8
	(c) Aufbau principle	(d) All of these		(c) 10	(d) 14
215.	Aufbau principle is	obeyed in which of the	226	Number of unpaired	l electrons in Mn^{4+} is[DPMT 200]
-	following electronic co	nfigurations [AFMC 1999]		(a) 3	(b) 5
	(a) $1s^2 2s^2 2p^6$	(b) $1s^2 3p^3 3s^2$		(c) 6	(d) 4
	(c) $1s^2 3s^2 3n^6$	(d) $1s^2 2s^2 3s^2$	227.	Which of the follow	ing sequence is correct as per
216	Following Hund's rule	which element contains six		Autoau principie (a) $3s < 3d < 4s < 4n$	[DPM1 2005] (b) $1s < 2n < 4s < 3d$
210.	unpaired electron	[RPET 2000]		(a) $3s < 5a < 4s < 4p$	(d) $2s < 2p < 3d < 3p$
	(a) <i>Fe</i>	(b) <i>Co</i>	228	(c) $2s < 5s < 4p < 5a$	(u) $2s < 2p < 5u < 5p$
	(c) <i>Ni</i>	(d) <i>Cr</i>	220	Electronic configura	
217.	Electron enters the	sub-shell for which $(n+l)$		(a) $1s^{1}$	(b) $2s^2$
	value is minimum. This	s is enunciated as		(c) $2s^1$	(d) $1s^2$
		[RPMT 2000]		(C) 23	(u) 15
	(a) Hund's rule				
	(b) Aufbau principle			Criti	cal Thinking
	(c) Heisenberg uncerta	inty principle			J
	(d) Pauli's exclusion p	rinciple			Objective Questions
218.	The atomic orbitals a	are progressively filled in			-
	as	angy. This principle is called	1	Which of the foll	lowing atoms and ions are
		[MP PET 2001]	1.	isoelectronic <i>i.e.</i>	have the same number of
	(a) Hund's rule	(b) Aufbau principle		electrons with the n	eon atom
	(c) Exclusion principle	e (d) de-Broglie rule			[NCERT 1978]
219.	The correct order of i	ncreasing energy of atomic		(a) <i>F</i> ⁻	(b) Oxygen atom
	orbitals is			(c) <i>Mg</i>	(d) N^{-}
		[MP PET 2002]	2	Atoms consists (of protons neutrons and
	(a) $5p < 4f < 6s < 5d$	(b) $5p < 6s < 4f < 5d$	2.	electrons. If the ma	ass of neutrons and electrons
	(c) $4f < 5p < 5d < 6s$	(d) $5p < 5d < 4f < 6s$		were made half an	d two times respectively to
220.	The orbital with maxin	num energy is [CPMT 2002]		their actual masses,	then the atomic mass of $_6 C^{12}$
	(a) 3 <i>d</i>	(b) 5p		(a) Will remain app	roximately the same
	(c) 4s	(d) 6d		(b) Will become app	proximately two times
221.	<i>p</i> -orbitals of an atom	i in presence of magnetic		(c) Will remain app	roximately half
	lielu ale	[Ph PMT 2002]		(d) Will be reduced	by 25%
	(a) Two fold degenerat	te (b) Non degenerate	3.	The increasing orde	er (lowest first) for the values
	(c) Three fold degener	ate (d) None of these	-	of e/m (charge/mas	ss) for
222.	Orbital angular moment	tum for a <i>d</i> -electron is[MP PET	2003]	(a) e, p, n, α	(b) n, p, e, α
	6h	$\sqrt{6} h$		(c) n, p, q, e	(d) n, α, p, e
	(a) $\frac{1}{2\pi}$	(b) $\frac{1}{2\pi}$		The electronic confi	curve of a dimensitive metal
	12 <i>h</i>	$\sqrt{12} h$	4.	M^{2+} is 2 8 14 and	its atomic weight is 56 a mu
	(c) $\frac{12\pi}{2\pi}$	(d) $\frac{\sqrt{12}\pi}{2\pi}$		M 18 2, 8, 14 and The number of neutr	rons in its nuclei would be
223.	Number of nodal centr	es for 2s orbital [RPET 2003]			MNR 1984. 80: Kerala PMT 1000
	(a) 1	(b) O		(a) 30	(h) 22
	(c) 4	(d) 3		(a) 30	(d) 42
224.	The orbital angular m	omentum of an electron in		(0) 34	(u) 42
	2 <i>s</i> -orbital is		5. []	MPher 2004 pf the e	nergy of a photon of 2000 Å
	(a) $\frac{1}{h}$	(b) $\frac{h}{}$		wavelength radiatio	on to that of 4000 Å radiation is
	$2 2\pi$	2π		[11]	T 1986; DCE 2000; JIPMER 2000]
				(a) 1/4	(b) 4

				Struc	ture of atom 73
	(c) 1/2	(d) 2	15.	The ionization energ	y of hydrogen atom is
•	Discovery of the nucl the experiment carried	eus of an atom was due to l out by [CPMT 1983; MP PET 19 4	83]	-13.6 eV. The energy electron in a hydroge	required to excite the en atom from the ground
	(a) Bohr	(b) Mosley		state to the first exc	ited state is (Avogadro's
	(c) Rutherford	(d) Thomson		constant = 6.022×10^{23}	(BHU 1999)
	In a Bohr's model of a	tom when an electron jumps		(a) $1.69 \times 10^{-20} J$	(b) $1.69 \times 10^{-23} J$
	from $n=1$ to $n=3$,	how much energy will be		(c) $1.69 \times 10^{23} J$	(d) $1.69 \times 10^{25} J$
	(a) $2.15 \times 10^{-11} erg$	(b) $0.1911 \times 10^{-10} erg$	16.	The energy required excited isolated <i>H</i> -atom	to dislodge electron from a, $IE_1 = 13.6 \ eV$ is [DCE 2000]
	(c) $2.389 \times 10^{-12} erg$	(d) $0.239 \times 10^{-10} erg$		(a) $=13.6 eV$	(b) >13.6 eV
	The nucleus of an at spherical. The radius	om can be assumed to be s of the nucleus of mass		(c) < 13.6 and $> 3.4 eV$	(d) $\leq 3.4 eV$
	number A is given by	y $1.25 \times 10^{-13} \times A^{1/3} cm$ Radius	17.	The number of nodal pl	anes in a p_x is
	of atom is one $\rarksim A$. If t	he mass number is 64, then			[IIT Screening 2000]
	the fraction of the ato	mic volume that is occupied		(a) One	(b) Two
	by the nucleus is $(-)$ 1.0 $(-)^{-3}$	[NCEKT 1983]		(c) Three	(d) Zero
	(a) 1.0×10^{-3}	(D) 5.0×10^{-5}	18.	The third line in Balme	er series corresponds to an
	(c) 2.5×10^{-2}	(d) 1.25×10^{-13}		electronic transition be	etween which Bohr's orbits
	The energy of an electric H atom is $-13.6eV$ T	ron in the first Bohr orbit of		in hydrogen	
	of the excited state(s)	for electrons in Bohr orbits			
	to hydrogen is(are)			(a) $5 \rightarrow 3$	(b) $5 \rightarrow 2$
		[IIT 1998; Orissa JEE 2005]		(c) $4 \rightarrow 3$	(d) $4 \rightarrow 2$
	(a) $-3.4eV$	(b) $-4.2eV$ (d) $+6.8eV$	19.	unpaired electron (ator	g has maximum number of nic number of <i>Fe</i> 26)[MP PMT 2
	The energy of the ele	ectron in the first orbit of		(a) <i>Fe</i>	(b) <i>Fe</i> (II)
	He^+ is $-871.6 \times 10^{-20} J$. The energy of the electron		(c) <i>Fe</i> (III)	(d) <i>Fe</i> (IV)
	in the first orbit of hyd	lrogen would be[Roorkee Quali	ify i2ng, 1	998) frequency of one	of the lines in Paschen
	(a) $-871.6 \times 10^{-20} J$	(b) $-435.8 \times 10^{-20} J$		series of hydrogen at	tom is $2.340 \times 10^{11} Hz$. The
	(c) $-217.9 \times 10^{-20} J$	(d) $-108.9 \times 10^{-20} J$		quantum number n	₂ which produces this
	The total number of va	alence electrons in $4.2 gm$ of		transition is	[DPMT 2001]
	N_3^- ion is (N_4 is the A	Avogadro's number)[CBSE PMT	[1994]	(a) 6	(b) 5
	(a) $16N$	(b) $3.2N$		(c) 4	(d) 3
	(c) $2.1N_A$	(d) $4.2N_A$	21.	Which of the followin hydrogen atom will rec	g electron transition in a juire the largest amount of
	The Bohr orbit radiu	is for the hydrogen atom		energy	[UBSEAT 1000 2000 01]
	(n = 1) is approximatel	y 0.530 Å. The radius for the		(a) From $n-1$ to $n-2$	(b) From $n = 2$ to $n = 3$
	first excited state (n =	2) orbit is [CBSE PMT 1998; BHI	U 1999]	(a) From $n = r$ to $n = 2$	(d) From $n = 3$ to $n = 5$
	(a) 0.13 <i>Å</i>	(b) 1.06Å	ว ว	In Bohr series of lines	of hydrogen spectrum the
	(c) 4.77 <i>Å</i>	(d) 2.12Å	22,	third line from the red	end corresponds to which
	The frequency of a way wave number associate	we of light is $12 \times 10^{14} s^{-1}$. The ed with this light is [Pb. PMT 199]	99]	one of the following electron for Bohr orbits	inter-orbit jumps of the in an atom of hydrogen
	(a) $5 \times 10^{-7} m$	(b) $4 \times 10^{-8} cm^{-1}$		(a) $3 \rightarrow 2$	(b) $5 \rightarrow 2$
	(c) $2 \times 10^{-7} m^{-1}$	(d) $4 \times 10^4 cm^{-1}$		(c) $4 \rightarrow 1$	(d) $2 \rightarrow 5$
,	The series limit for Ba	lmer series of <i>H</i> -spectra is	23.	The value of Planck's co	instant is 6.63×10^{-34} Js. The
		[AMU (Engg.) 1999]		velocity of light is 3.0	$\times 10^8 m s^{-1}$. Which value is
	(a) 3800	(b) 4200		closest to the wavele	ngth in nanometres of a
	(c) 3646	(d) 4000		quantum of light with fr	equency of $8 \times 10^{15} s^{-1}$

- (a) 3×10^7 (b) 2×10^{-25}
- (c) 5×10^{-18} (d) 4×10^{1}

	74 Stru	cture of atom			
24.	As electron potential ene (a) Increases	moves away from the nucleus, its ergy [UPSEAT 2003] s (b) Decreases	6.	Assertion :	Two electrons in an atom can have the same values of four quantum numbers.
	(c) Remains	constant (d) None of these		Reason :	Two electrons in an atom can be present in the same shell, sub-shell and orbital and have the same spin[AIIMS 24
	R As	sertion & Reason For ANNMS Aspirants	7.	Assertion :	The value of n for a line in Balmer series of hydrogen spectrum having the highest wave length is 4 and 6.
Door	the accortio	n and reason carefully to mark the		Reason :	For Balmer series of hydrogen spectrum, the value $n_1 = 2$ and
corr	ect option out	of the options given below :			$n_2 = 3, 4, 5.$
(<i>a</i>)	reason is the	correct explanation of the assertion.	8.	Assertion :	[AIIMS 1992] Absorption spectrum conists of
(b)	If both asser not the corre	tion and reason are true but reason is ect explanation of the assertion.			some bright lines separated by dark spaces.
(C) (d) (e)	If assertion i If the asserti If assertion i	s true but reason is faise. on and reason both are false. s false but reason is true.		Reason :	Emission spectrum consists of dark lines.
(0)	19 40000 00000				[AIIMS 2002]
1.	Assertion :	The position of an electron can be determined exactly with the help of an electron microscope.	9.	Assertion :	A resonance hybrid is always more stable than any of its canonical structures.
	Reason :	The product of uncertainty in the measurement of its momentum and		Reason :	This stability is due to delocalization of electrons. [AIIMS 1999]
		the uncertainty in the measurement of the position cannot be less than a	10.	Assertion :	Cathode rays do not travel in straight lines.
		finite limit. [NDA 1999]		Reason :	Cathode rays penetrate through thick sheets [AIIMS 1996]
2.	Assertion :	A spectral line will be seen for a $2p_x - 2p_y$ transition.	11.	Assertion :	Electrons revolving around the nucleus do not fall into the nucleus because of centrifugal force
	Reason :	Energy is released in the form of wave of light when the electron drops from $2p_x - 2p_y$ orbital.[AIIMS 19	96]	Reason :	Revolving electrons are planetary electrons.
3.	Assertion :	The cation energy of an electron is			[AIIMS 1994]
9		largely determined by its principal quantum number.	12.	Assertion :	Threshold frequency is a characteristic for a metal.
	Reason :	The principal quantum number n is a measure of the most probable distance of finding the electron		Reason :	Threshold frequency is a maximum frequency required for the ejection of electron from the metal surface.
		around the nucleus.	13.	Assertion :	The radius of the first orbit of
		[AIIMS 1996]			hydrogen atom is 0.529Å.
4.	Assertion :	Nuclide ${}^{30}Al_{13}$ is less stable than		Reason :	Radius for each circular orbit
		$^{40}Ca_{20}$			$(r_n) = 0.529 \text{A} (n^2/2)$, where $n = 1,2,3$
	Reason .	Nuclides having odd number of	14	Accortion :	and $Z =$ atomic number.
	Reason .	protons and neutrons are generally unstable	14.	Assertion :	su_{z^2} orbital is spherically symmetrical.
		[IIT 1998]		Reason :	$3d_{z^2}$ orbital is the only <i>d</i> -orbital
5٠	Assertion :	The atoms of different elements			which is spherical in shape.
		having same mass number but different atomic number are known	15.	Assertion :	Spin quantum number can have the value $+1/2$ or $-1/2$.
	Roacon -	as isobars		Reason :	(+) sign here signifies the wave
	reason :	the isobars is always different[AIIMS 20	000]		runction.

16.	Assertion	:	Total number of orbitals associated with principal quantum number $n = 3$ is 6.
	Reason	:	Number of orbitals in a shell equals to $2n$.
17.	Assertion	:	Energy of the orbitals increases as 1s < 2s = 2p < 3s = 3p < 3d < 4s = 4p $= 4d = 4f < \dots$
	Reason	:	Energy of the electron depends completely on principal quantum number.
18.	Assertion	:	Splitting of the spectral lines in the presence of magnetic field is known as stark effect.
	Reason	:	Line spectrum is simplest for hydrogen atom.
19.	Assertion	:	Thomson's atomic model is known as 'raisin pudding' model.
	Reason	:	The atom is visualized as a pudding of positive charge with electrons (raisins) embedded in it.
20.	Assertion	:	Atomic orbital in an atom is designated by n, l, m_l and m_s .
	Reason	:	These are helpful in designating electron present in an orbital.
21.	Assertion	:	The transition of electrons $n_3 \rightarrow n_2$ in <i>H</i> atom will emit greater energy than $n_4 \rightarrow n_3$.
	Reason	:	n_3 and n_2 are closer to nucleus tan n_4 .
22.	Assertion	:	Cathode rays are a stream of α - particles.
	Reason	:	They are generated under high pressure and high voltage.
23.	Assertion	:	In case of isoelectronic ions the ionic size increases with the increase in atomic number.
	Reason	:	The greater the attraction of nucleus, greater is the ionic radius.

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

1	d	2	a	3	с	4	с	5	b
6	а	7	b	8	а	9	d	10	С
11	b	12	d	13	b	14	а	15	b
16	b	17	C	18	C	19	C	20	b

Structure of atom 75

21	а	22	d	23	с	24	b	25	d
26	С	27	b	28	d	29	С	30	а
31	b	32	d	33	b	34	c	35	с
36	a	37	b	38	а	39	d	40	c
41	с								

Atomic number, Mass number, Atomic species

		-						_	
1	b	2	а	3	b	4	b	5	а
6	а	7	c	8	b	9	c	10	b
11	b	12	C	13	b	14	c	15	С
16	c	17	c	18	a	19	c	20	a
21	C	22	b	23	C	24	d	25	b
26	b	27	a	28	а	29	С	30	b
31	C	32	d	33	d	34	С	35	c
36	C	37	C	38	b	39	d	40	C
41	b	42	C	43	а	44	С	45	b
46	c	47	d	48	a	49	с	50	c
51	а	52	C	53	b	54	а	55	c
56	а	57	d	58	С	59	а	60	а
61	d	62	b	63	a	64	c	65	b
66	а	67	c	68	а	69	d	70	d
71	c	72	a	73	b	74	d		

Atomic models and Planck's quantum theory

1	c	2	a	3	b	4	b	5	d
6	b	7	c	8	b	9	С	10	а
11	b	12	а	13	d	14	b	15	b
16	с	17	а	18	с	19	а	20	d
21	d	22	c	23	d	24	d	25	c
26	а	27	с	28	b	29	с	30	а
31	b	32	с	33	d	34	b	35	b
36	а	37	с	38	с	39	С	40	а
41	с	42	d	43	d	44	а	45	d
46	b	47	а	48	c	49	d	50	a
51	а	52	с	53	d	54	С	55	b
56	b	57	b	58	а	59	b	60	c
61	с	62	b	63	с	64	С	65	b
66	b	67	с	68	а	69	b	70	d
71	а	72	d	73	а	74	С	75	d
76	b	77	а	78	а	79	С	80	a
81	a								

Dual nature of electron

1	C	2	а	3	а	4	b	5	c
6	b	7	d	8	а	9	d	10	d

11	C	12	C	13	b	14	b	15	b
16	C	17	C	18	С	19	b	20	а
21	d								

Uncertainty principle and Schrodinger wave equation

1	b	2	b	3	а	4	с	5	с
6	c	7	b	8	d	9	d	10	а
11	a	12	c	13	a	14	b	15	d
16	b	17	a	18	c	19	с	20	b

Quantum number, Electronic configuration and Shape of orbitals

1	c	2	а	3	b	4	d	5	c
6	c	7	c	8	а	9	а	10	а
11	c	12	C	13	а	14	а	15	d
16	c	17	C	18	d	19	b	20	C
21	c	22	а	23	c	24	d	25	С
26	c	27	b	28	d	29	е	30	b
31	d	32	а	33	c	34	d	35	d
36	c	37	b	38	b	39	d	40	с
41	d	42	c	43	c	44	а	45	а
46	а	47	b	48	c	49	c	50	b
51	c	52	b	53	b	54	b	55	С
56	C	57	b	58	е	59	c	60	с
61	d	62	d	63	d	64	c	65	b
66	d	67	C	68	d	69	c	70	b
71	а	72	c	73	c	74	c	75	a
76	c	77	c	78	c	79	d	80	d
81	b	82	C	83	а	84	а	85	b
86	C	87	а	88	b	89	c	90	b
91	d	92	а	93	b	94	b	95	d
96	d	97	а	98	а	99	d	100	C
101	b	102	d	103	а	104	C	105	d
106	а	107	c	108	d	109	а	110	d
111	d	112	b	113	c	114	b	115	b
116	а	117	c	118	b	119	а	120	a
121	d	122	b	123	b	124	b	125	d
126	d	127	b	128	c	129	а	130	b
131	а	132	C	133	d	134	b	135	а
136	а	137	c	138	с	139	c	140	C
141	c	142	d	143	c	144	c	145	b
146	d	147	а	148	С	149	b	150	C

454	4	450	•	452	•	454	4	455	h
151	u	152	a	155	a	154	u	155	a
156	d	157	а	158	b	159	C	160	d
161	c	162	d	163	b	164	c	165	a
166	d	167	d	168	d	169	b	170	a
171	C	172	d	173	C	174	b	175	d
176	C	177	а	178	b	179	b	180	c
181	C	182	b	183	C	184	C	185	a
186	d	187	C	188	c	189	а	190	C
191	b	192	a	193	d	194	b	195	d
196	a	197	c	198	d	199	b	200	b
201	а	202	b	203	b	204	C	205	d
206	b	207	b	208	c	209	d	210	b
211	а	212	а	213	b	214	C	215	а
216	d	217	b	218	b	219	b	220	d
221	b	222	b	223	а	224	d	225	d
226	а	227	b	228	а				

Critical Thinking Questions

1	а	2	d	3	d	4	а	5	d
6	C	7	b	8	d	9	а	10	c
11	а	12	d	13	d	14	C	15	b
16	d	17	а	18	b	19	C	20	b
21	а	22	а	23	d	24	а		

Assertion & Reason

1	d	2	d	3	а	4	а	5	c
6	d	7	е	8	d	9	а	10	е
11	b	12	C	13	а	14	d	15	c
16	d	17	c	18	е	19	а	20	е
21	b	22	d	23	d				

Discovery and Properties of anode, cathode rays neutron and Nuclear structure

- 1. (d) Neutrons and protons in the nucleus and electrons in the extranuclear region.
 - (a) It consists of proton and neutron and these are also known as nucleones.
 - (c) Radius of nucleus $\simeq 10^{-15} m$.

2.

3.

4.

(c) Positive ions are formed from the neutral atom by the loss of electrons.

- **5.** (b) The β -ray particle constitute electrons.
- **6.** (a) James Chadwick discovered neutron $(_0n^1)$.
- 7. (b) Charge/mass for

$$n = 0, \alpha = \frac{2}{4}, p = \frac{1}{1}$$
 and $e = \frac{1}{1/1837}$

- **9.** (d) The density of neutrons is of the order $10^{11} kg / cc$.
- (c) This is because chargeless particles do not undergo any deflection in electric or magnetic field.
- 11. (b) Neutron and proton found in nucleus.
- 13. (b) Cathode rays are made up of negatively charged particles (electrons) which are deflected by both the electric and magnetic fields.
- 15. (b) Mass of neutron is greater than that of proton, meson and electron.Mass of neutron = mass of proton + mass of electron
- 16. (b) Proton is 1837 (approx 1800) times heavier than an electron. Penetration power $\propto \frac{1}{\text{mass}}$
- **18.** (c) Nucleus of helium is $_2He^4$ mean 2 neutrons and 2 protons.
- **19.** (c) Proton is the nucleus of *H*-atom (*H*-atom devoid of its electron).
- **20.** (b) Cathode rays are made up of negatively charged particles (electrons, e^-)
- **26.** (c) Size of nucleus is measured in *Fermi* (1 Fermi $= 10^{-15} m$).
- **27.** (b) A molecule of an element is a incorrect statement. The correct statement is "an element of a molecule".

- **40.** (c) Positron $(+1e^{0})$ has the same mass as that of an electron $(-1e^{0})$.
- **41.** (c) Electron $\frac{1}{1837}$ time lighter than proton so their mass ratio will be 1 : 1837

Atomic number, Mass number, Atomic species

- 1. (b) The number of electrons in an atom is equal to its atomic number *i.e.* number of protons.
- (a) No. of protons = Atomic no. = 25 and no. of neutron = 55 - 25 = 30.
- 3. (b) No. of neutrons = mass number no. of protons. = W N.
- 4. (b) $_{30} Zn^{70}, Zn^{2+}$ has No. of Neutrons = 70 30 = 40.
- **5.** (a) Na^+ and *Ne* are isoelectronic which contain 10 electrons.
- **6.** (a) One molecule of CO_2 have 22 electrons.
- (c) Cl and Cl⁻ differs in number of electrons. Cl has 17e⁻ while Cl⁻ has 18e⁻.
- **8.** (b) *CO* and CN^- are isoelectronic.

Structure of atom 75

CO = 6 + 8 = 14 and $CN^{-} = 6 + 7 + 1 = 14$.

- (c) Mass of an atom is due to nucleus (neutron + proton).
- **10.** (b) Atomic number is defined as the number of protons in the nucleus.
- **11.** (b) $_{26}X^{56}$ A = P + N = Z + N = E + N

$$N = A - E = 56 - 26 = 30$$

- 12. (c) Most probable radius = a_0 / Z where $a_0 = 52.9$ pm. For helium ion, Z = 2. $r_{mp} = \frac{52.9}{2} = 26.45$ pm.
- **13.** (b) Four unpaired electron are present in the Fe^{2+} ion $Fe^{2+}_{26} = [Ar]3d^6, 4s^0$
- 14. (c) Na^+ has 10 electron and Li^+ has 2 electron so these are different number of electron from each other.
- **16.** (c) $P_{15} = 2, 8, 5$

9.

17. (c) ${}_{8}O = 1s^2 2s^2 2p^4$

18. (a)
$$_{35}Br^{80} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$$

$$A = 80$$
 , $Z = 35$, $N = ?$

$$N = A - Z = 80 - 35 = 45$$

atomic number (Proton) is 35 and no. of neutron is 45.

- **19.** (c) $\frac{16}{8}O^{--}$ have more electrons than neutron p = 8, e = 10, n = 8.
- **20.** (a) ${}_{6}A^{12}$ and ${}_{6}X^{13}$ both are isotopes but have different no. of neutrons.

$$_{6}A^{12}$$
, For A have $p = 6, e = 6$ and $n = 6$ and

 $_{6}X^{13}$, For *B* have p = 6, e = 6 and n = 7

- **21.** (c) P = 20, mass no. (A) = 40 N = A - P = 40 - 20 = 20P = N = 20.
- 22. (b) Electrons in $Na^+ = 11 1 = 10$ Electrons in $Mg^{2+} = 12 - 2 = 10$
- **23.** (c) $_{20}Ca^{40}$ has 20 proton, 20 neutron.
- **24.** (d) $CH_3^+ = 6 + 3 1 = 8e^-$, $H_3O^+ = 3 + 8 - 1 = 10e^-$,

 $NH_3 = 7 + 3 = 10e^-$, $CH_3^- = 6 + 3 + 1 = 10e^-$

25. (b) $-CONH_2 = 6 + 8 + 7 + 2 + 1$ (from other atom to form covalent bond) = 24.

26. (b) Complete *E.C.* =
$$[Ar]^{18} 3d^{10} 4s^2 4p^6$$
.

Hence no. of $e^- =$ no. of protons = 36 = Z.

28. (a)
$$K^+ = 1s^2 2s^2 2p^6 3s^2 3p^6$$

 $Cl^- = 1s^2 2s^2 2p^6 3s^2 3p^6$.

29. (c) Mass no. ≈ At. Wt.

Mass no. = no. of protons + no. of neutrons

- **30.** (b) $N_2O = 14 + 8 = 22$ $CO_2 = 6 + 16 = 22.$
- **31.** (c) Neutron in ${}_{6}^{12}C = 6$, Neutrons in ${}_{14}^{28}Si = 14$ Ratio = 6 : 14 = 3 : 7.
- **33.** (d) $N_7 = 1s^2 2s^2 2p^3$ $N^+ = 1s^2 2s^2 2p^2$ $C = 1s^2 2s^2 2p^2$.
- **34.** (c) O = C = O, linear structure 180° angle
 - Cl Hg Cl, linear structure 180° angle.
- **35.** (c) $H^- = 1s^2$ and $He^+ = 1s^2$.
- **36.** (c) In the nucleus of an atom only proton and neutrons are present.
- **37.** (c) Cu_{29}^{63} Number of neutrons = atomic mass atomic number = 63 29 = 34.
- **38.** (b) 21 Protons and 24 Neutrons are present in nucleus and element is *Sc.*
- **40.** (c) $_{7}X^{14}$, n = 14 7 = 7
- **42.** (c) Cl^- have 17 proton, 18 neutron and 18 electron.
- **43.** (a) Number of unpaired electrons in inert gas is zero because they have full filled orbitals.
- 44. (c) Electrons and Protons are same in neutral atom.
- **48.** (d) No. of proton and no. of electron = $18 [Ar_{18}^{36}]$ and No. of neutron = 20 Mass number = P + N = 18 + 20 = 38.
- **49.** (c) In Xe_{89}^{231} number of protons and electrons is 89 and No. of neutrons = A Z = 231 89 = 142.
- **51.** (a) NO_2^- and O_3^- are isostere. The number of atoms in these (= 3) and number of electrons (24) are same.
- **52.** (c) Number of electrons in nitrogen = 7 and number of electron is oxygen = 8 we know that formula of nitrate ion is NO_3^- we also know that number of electron
 - = (1 × Number of electrons in nitrogen)

Malamlan masa 256

+
$$(3 \times \text{number of electrons in oxygen}) + 1$$

$$= (1 \times 7) + (3 \times 8) + 1 = 32.$$

53. (b) Atomicity =
$$\frac{\text{Molecular mass}}{\text{Atomic mass}} = \frac{236}{32} = 8 = S_8$$
.

- **54.** (a) In case of N^{3-} , p = 7 and c = 10
- **55.** (c) Chlorine $Cl_{17} = [Ne]$

- **56.** (a) Bromine consists of outer most electronic configuration [Ar] $3d^{10} 4s^2 4p^5$.
- **57.** (d) $Na^+ = 1s^2 2s^2 2p^6$

$$Mg^{++} = 1s^{2} 2s^{2} 2p^{6}$$
$$O^{2-} = 1s^{2} 2s^{2} 2p^{6}$$
$$Cl^{-} = 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6}$$

60. (a) Ar_{18}^{40} = atomic number 18 and no. of Neutron in case of Ar_{22} Neutron = Atomic mass – Atomic number

$$=40 - 18 = 22$$

61. (d) Nucleus of tritium contain $[H_1^3]$

$$p = 1$$
, $e = 1$, $n = 2$

- **62.** (b) N^{3-}, F^- and Na^+ (These three ions have $e^- = 10$, hence they are isoelectronic)
- **63.** (a) NO_3^- and CO_3^{2-} consist of same electron and show same isostructural.
- **64.** (c) Atomic number of chlorine 17 and in Cl^- ion total no. of electron =18.
- **65.** (b) Tritium (H_1^3) has one proton and two neutron.
- **67.** (c) $X_{35} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4s^2 4p^5$

Total no. of e^- is all *p*-orbitals = 6 + 6 + 5 = 17.

- **68.** (a) Since its nucleus contain 9 proton so its. atomic number is 9 and its electronic configuration is 2, 7. So it require one more electron to complete its octet. Hence its valency is 1.
- **69.** (d) K_2S formed by K^+ and S^{2-} ion. We know that atomic number of K is 19 and in K^+ ion its atomic number would be 18 similarly atomic number of S is 16 and in form S^{2-} ion its atomic number would be 18 so the K^+ and S^{2-} are isoelectronic with each other in K_2S .
- **70.** (d) $_{20}Ca = 2, 8, 8, 2$

 $Ca^{2+} = 2, 8, 8$

Hence, Ca^{2+} has 8 electrons each in outermost and penultimate shell.

- 71. (c) Atomic no. of C = 6 so the number of protons in the nucleus = 6
- **72.** (a) No. of P = Z = 7; No. of electrons in $N^{3-} = 7 + 3 = 10$.
- 73. (b) Heavy hydrogen is ${}_{1}^{2}D$.Number of neutrons = 1
- 74. (d) Atomic number is always whole number.

Atomic models and Planck's quantum theory

Three electron

- (a) The central part consisting whole of the positive charge and most of the mass caused by nucleus, is extremely small in size compared to the size of the atom.
- **3.** (b) Electrons in an atom occupy the extra nuclear region.
- (b) According to the Bohr model atoms or ions contain one electron.
- 5. (d) The nucleus occupies much smaller volume compared to the volume of the atom.
- (c) α-particles pass through because most part of the atom is empty.
- **8.** (b) An electron jumps from *L* to *K* shell energy is released.
- **9.** (c) Neutron is a chargeless particles, so it does not deflected by electric or magnetic field.
- **10.** (a) Energy is always absorbed or emitted in whole number or multiples of quantum.
- **11.** (b) Both *He* and Li^+ contain 2 electrons each.
- (c) During the experimental verification of de-Broglie equation, Davisson and Germer confirmed wave nature of electron.
- 19. (a) Increases due to absorption of energy and it shows absorption spectra.
- **20.** (d) Rutherford α -Scattering experiment.
- **21.** (d) It represents Heisenberg's uncertainty principle.

23. (d)
$$\frac{E_4}{E_2} = \frac{2^2}{4^2} = \frac{4}{16} = \frac{1}{4}$$
; $E_4 = \frac{E_2}{4} = \frac{-328}{4} = -82 \ kJ \ mol.$

27. (c) When
$$c = v \times \lambda$$
 than $\lambda = \frac{c}{v} = \frac{3 \times 10^8}{2 \times 10^6} = 1.5 \times 10^2 m$

28. (b) According to quantum theory of radiation, a hot body emits radiant energy not continuously but discontinuously in the form of small packets of energy called quanta or photons.

30. (a)
$$p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{2.2 \times 10^{-11}} = 3 \times 10^{-23} kgms^{-1}$$

34. (b) Bohr's radius $= \frac{n^2 h^2}{4\pi^2 m e^2 z}$. Which is a positive

quantity.

40. (a) Gold used by Rutherford in scatting experiment.

41. (c)
$$\Delta E = E_3 - E_2 = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = 1.9 \ eV$$

42. (d) $R = R_0 (= 1.4 \times 10^{-13} \ cm) \times A^{1/3}$

43. (d)
$$\left(\frac{q}{m}\right)_{\alpha} = \frac{1}{2} \left(\frac{q}{m}\right)_{p} = \frac{1}{2} \times 9.6 \times 10^{7} = 4.8 \times 10^{7} C kg^{-1}$$

- 44. (a) According to Hydrogen spectrum series.
- **45.** (d) The electron can move only in these circular orbits where the angular momentum is a whole number multiple of $\frac{h}{2\pi}$ or it is quantised.

- **46.** (b) Generally electron moving in orbits according to Bohr's principle.
- **47.** (a) According to the planck's law that energy of a photon is directly proportional to its frequency *i.e.* E = hv
- 49. (d) Bohr's radius of the hydrogen atom

$$r = \frac{n^2 \times 0.529 \text{ Å}}{z}$$
; where $z =$ Atomic number,

Å

n = Number of orbitals

51. (a)
$$E = -\frac{2.172 \times 10^{-18}}{n^2} = \frac{-2.172 \times 10^{-18}}{2^2}$$

=
$$-5.42 \times 10^{-19} J$$
.
52. (c) $\Delta E = \frac{hc}{\lambda}$ or $\lambda = \frac{hc}{\Delta E}$

$$= \frac{6.64 \times 10^{-34} \times 3 \times 10^{8}}{3 \times 10^{-8}} = 6.64 \times 10^{-8}$$

53. (d)
$$r_n = r_1 \times n^2$$

 $r_3 = 0.53 \times 3^2 = 0.53 \times 9 = 4.77 \text{ Å}$

- 54. (c) According to Rutherford an atom consists of nucleus which is small in size but carries the entire mass (*P*+ *N*).
- **55.** (b) Wavelength of spectral line emitted is inversely proportional to energy $\lambda \propto \frac{1}{E}$.

56. (b)
$$E \propto \frac{1}{\lambda}$$
; $E_1 = \frac{1}{8000}$; $E_2 = \frac{1}{16000}$
 $\frac{E_1}{E_2} = \frac{16000}{8000} = 2 \implies E_1 = 2E_2$

58. (a)
$$v = \frac{c}{\lambda} = \frac{3 \times 10^8 \ ms^{-1}}{600 \times 10^{-9} \ m} = 5.0 \times 10^{14} \ Hz$$
.

59. (b)
$$E = \frac{-13.6}{n^2} eV = \frac{-13.6}{2^2} = \frac{-13.6}{4} = -3.40 eV$$

65. (b) Bohr radius
$$=\frac{r_2}{r_1} = \frac{(2)^2}{(1)^2} = 4$$
.

66. (b)
$$v = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = 109678 \left[\frac{1}{1} - \frac{1}{4} \right] = 82258 .5$$

 $\lambda = 1.21567 \times 10^{-5} cm \text{ or } \lambda = 12.1567 \times 10^{-6} cm$
 $= 12.1567 \times 10^{-8} m$

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{12.567 \times 10^{-8}} = 24.66 \times 10^{14} Hz$$
.

67. (c) We know that
$$\lambda = \frac{h}{mv}$$
; $\therefore m = \frac{h}{m\lambda}$
The velocity of photon $(v) = 3 \times 10^8 m \sec^{-1}$
 $\lambda = 1.54 \times 10^{-8} cm = 1.54 \times 10^{-10} m eter$
 $\therefore m = \frac{6.626 \times 10^{-34} Js}{1.54 \times 10^{-10} m \times 3 \times 10^8 m \sec^{-1}}$
 $= 1.4285 \times 10^{-32} kg$.

- **68.** (a) The spliting of spectral line by the magnetic field is called Zeeman effect.
- 69. (b) $r \propto n^2$ (excited state n=2) $r=4a_0$

(d)
$$r_n \propto n^2 : A_n \propto n^4$$

$$\frac{A_2}{A_1} = \frac{n_2^4}{n_1^4} = \frac{2^4}{1^4} = \frac{16}{1} = 16:1$$

71. (a) It will take
$$\frac{4\pi^2 mr^2}{nh}$$

70.

72.

74.

(d)
$$r_H = 0.529 \frac{n^2}{z} \mathring{A}$$

For hydrogen ; $n = 1$ and $z = 1$ therefore
 $r_H = 0.529 \mathring{A}$

For Be^{3+} : Z = 4 and n = 2 Therefore

$$r_{Be^{3+}} = \frac{0.529 \times 2^2}{4} = 0.529 \,\text{\AA}$$
 .

73. (a)
$$E_{\text{ionisation}} = E_{\infty} - E_n = \frac{13.6Z_{eff}^2}{n^2} eV$$
$$= \left[\frac{13.6Z^2}{n_2^2} - \frac{13.6Z^2}{n_1^2}\right]$$

$$E = hv = \frac{13.6 \times 1^2}{(1)^2} - \frac{13.6 \times 1^2}{(4)^2}; hv = 13.6 - 0.85$$

:
$$h = 6.625 \times 10^{-34}$$

 $u = -\frac{13.6 - 0.85}{2} \times 1.6 \times 10^{-19} = -3.08 \times 10^{15} \text{ s}^{-1}$

$$v = \frac{1}{6.625 \times 10^{-34}} \times 1.6 \times 10^{-15} = 3.08 \times 10^{15} \text{ s}^{-1} \text{ .}$$
(c) $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$

$$\frac{1}{\lambda} = 1.097 \times 10^7 m^{-1} \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right]$$

$$\therefore \quad \lambda = 91 \times 10^{-9} m$$

We know $10^{-9} = 1 nm$ So $\lambda = 91 nm$

75. (d) $r \propto n^2$ For Ist orbit $\gamma = 1$ For IIIrd orbit = $\gamma \propto 3^2 = 9$

So it will
$$9\gamma$$
.

76. (b) Bohr suggest a formulae to calculate the radius and energy of each orbit and gave the following formulae

$$r_n = \frac{n^2 h^2}{4\pi^2 kme^4 Z}$$

Where except n^2 , all other unit are constant so $r_n \propto n^2$.

77. (a) Energy of an electron $E = \frac{-E_0}{n^2}$

For energy level (n = 2)

$$E = -\frac{13.6}{(2)^2} = \frac{-13.6}{4} = -3.4 \, eV \, .$$

78. (a) Energy of ground stage $(E_0) = -13.6eV$ and energy level = 5

$$E_5 = \frac{-13.6}{n^2} eV = \frac{-13.6}{5^2} = \frac{-13.6}{25} = -0.54 eV.$$

- **79.** (c) Positive charge of an atom is present in nucleus.
- **81.** (a) For $n_4 \rightarrow n_1$, greater transition, greater the energy difference, lesser will be the wavelength.

Dual nature of electron

1. (c) According to de-Broglie equation $\lambda = \frac{h}{mv}$ or $\frac{h}{p}$

or
$$\frac{n}{mc}$$
.

4.

7.

12.

(b) $\lambda = \frac{h}{p} \operatorname{or} \frac{h}{mv} \operatorname{or} \frac{h}{mc}$ de-Broglie equation.

- 5. (c) Emission spectra of different λ accounts for quantisation of energy.
- 6. (b) According to de-Broglie equation

$$\lambda = \frac{h}{mv}, \ p = mv$$
, $\lambda = \frac{h}{p}$, $\lambda = \frac{h}{mc}$

(d) According to de-Broglie
$$\left(\lambda = \frac{h}{mv}\right)$$
.

8. (a)
$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10^{-3} \times 100} = 6.63 \times 10^{-33} m$$

9. (d)
$$\lambda = \frac{h}{mv}$$
. For same velocity $\lambda \propto \frac{1}{m}$

 SO_2 molecule has least wavelength because their molecular mass is high.

10. (d) de-Broglie equation is
$$\lambda = \frac{h}{p}$$
.

11. (c) Formula for de-Broglie wavelength is

$$\lambda = \frac{h}{p} \text{ or } \lambda = \frac{h}{mv} \Longrightarrow eV = \frac{1}{2}mv^2 \text{ or } v = \sqrt{\frac{2eV}{m}}$$
$$\lambda = \frac{h}{\sqrt{2meV}} = \frac{6.62 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 2.8 \times 10^{-23}}}$$
$$\lambda = 9.28 \times 10^{-8} \text{ meter } .$$

(c)
$$\lambda = \frac{h}{p}$$
, $p = mv$
 $\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 1.2 \times 10^{54}}$
 $\lambda = 6.626 \times 10^{-9} m$.

13. (b) Mass of the particle $(m) = 10^{-6} kg$ and velocity of the particle $(v) = 10 ms^{-1}$

$$\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-34}}{10^{-6} \times 10} = 6.63 \times 10^{-29} \, m$$

5. (b) According to de-Broglie

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-20} \text{ erg. sec}}{\frac{2}{6.023 \times 10^{23}} \times 5 \times 10^{4} \text{ cm / sec}}$$

$$=\frac{6.62\times10^{-27}\times6.023\times10^{23}}{2\times5\times10^{4}}\,cm\,=4\times10^{-8}\,cm=4\,\text{\AA}\,.$$

16. (c)
$$\lambda = \frac{h}{mv} = \frac{6.625 \times 10^{-34}}{0.2 \, kg \times \frac{5}{60 \times 60 \, ms^{-1}}} = 10^{-30} \, m \, .$$

17. (c) From de Broglie equation

=

$$\lambda = \frac{h}{mv} = \frac{6.62 \times 10^{-34}}{0.5 \times 100} = 1.32 \times 10^{-35} m \; .$$

18. (c) Dual nature of particle was proposed by debroglie who gave the following equation for the wavelength.

$$\lambda = \frac{h}{mv}$$

19. (b) One percent of the speed of light is

$$v = \left(\frac{1}{100}\right) (3.00 \times 10^8 \, ms^{-1}) = 3.00 \times 10^6 \, ms^{-1}$$

Momentum of the electron (p) = m v

$$= (9.11 \times 10^{-31} kg)(3.00 \times 10^{6} ms^{-1})$$

$$= 2.73 \times 10^{-24} kg ms^{-1}$$

The de-broglie wavelength of this electron is

$$\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34}}{2.73 \times 10^{-24} \, kgms^{-1}}$$
$$\lambda = 2.424 \times 10^{-10} \, m \, .$$

20. (a) We know that the correct relationship between wavelength and momentum is $\lambda = \frac{h}{p}$.

Which is given by de-Broglie.

21. (d) De-broglie equation applies to all the material object in motion.

Uncertainty principle and Schrodinger wave equation

- (b) The uncertainty principle was enunciated by Heisenberg.
- 2. (b) According to uncertainty principle, the product of uncertainties of the position and momentum, is $\Delta x \times \Delta p \ge h/4\pi$.

5. (c)
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
 is not the correct relation. But

correct Heisenberg's uncertainty equation is $\Delta x \times \Delta p \ge \frac{h}{4\pi}$.

 (b) According to the Heisenberg's uncertainty principle momentum and exact position of an electron can not be determined simultaneously.

8. (d)
$$\Delta x. \Delta p \ge \frac{h}{4\pi}$$
, if $\Delta x = 0$ then $\Delta p = \infty$.

12. (c) According to
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$

$$\Delta x = \frac{h}{\Delta p \times 4\pi} = \frac{6.62 \times 10^{-34}}{1 \times 10^{-5} \times 4 \times 3.14} = 5.27 \times 10^{-30} \, m \, .$$

$$\Delta v = \frac{h}{4\pi \times m \times \Delta v} = \frac{6.625 \times 10^{-34}}{4 \times 3.14 \times .01 \times 10^{-5}}$$
$$= 5.2 \times 10^{-28} \, \text{m/sec} \quad .$$

- 14. (b) $\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$ This equation shows Heisenberg's uncertainty principle. According to this principle the product of uncertainty in position and momentum of particle is greater than equal to $\frac{h}{4\pi}$.
- 15. (d) Spin quantum number does not related with Schrodinger equation because they always show +1/2, -1/2 value.

16. (b) According to
$$\Delta x \times m \times \Delta v = \frac{h}{4\pi}$$
; $\Delta v = \frac{h}{\Delta x \times m \times 4\pi}$

$$=\frac{6.6\times10^{-34}}{10^{-5}\times0.25\times3.14\times4}=2.1\times10^{-29} m/s$$

17. (a) Uncertainity in position $\Delta x = \frac{h}{4\pi \times \Delta p}$

$$=\frac{6.63\times10^{-34}}{4\times3.14\times(1\times10^{-5})}=5.28\times10^{-30}\,m\,.$$

18. (c) Given that mass of electron $= 9.1 \times 10^{-31} kg$ Planck's constant $= 6.63 \times 10^{-34} kg m^2 s^{-1}$

By using
$$\Delta x \times \Delta p = \frac{h}{4\pi}$$
; $\Delta x \times \Delta v \times m = \frac{h}{4\pi}$

where :
$$\Delta x$$
 = uncertainity in position Δv = uncertainity in velocity

$$\Delta x \times \Delta v = \frac{h}{4\pi \times m}$$

3.

5٠

6.

7.

8.

$$\frac{6.63 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31}} = 5.8 \times 10^{-5} m^2 s^{-1}.$$

Quantum number, Electronic configuration and Shape of orbitals

- (b) The shape of an orbital is given by azimuthal quantum number '*l*'.
- (c) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- (c) $1s^2, 2s^2, 2p^6$ represents a noble gas electronic configuration.
- (c) The electronic configuration of Ag in ground state is $[Kr]4d^{10}5s^1$.
- (a) *n*, *l* and *m* are related to size, shape and orientation respectively.

9. (a) Electronic configuration of $Rb_{(37)}$ is

$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 5s^1$$

So for the valence shell electron $(5s^1)$

$$n = 5, l = 0, m = 0, s = +\frac{1}{2}$$

- (a) 3*d* subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4*s* electrons jumps into 3*d* subshell for more sability.
- (c) In 2p orbital, 2 denotes principal quantum number (n) and p denotes azimuthal quantum number (l = 1).
- **12.** (c) Electronic configuration of H^- is $1s^2$. It has 2 electrons in extra nuclear space.
- 13. (a) The electronic configuration must be $1s^2 2s^1$. Hence, the element is lithium (z = 3).
- 14. (a) Principal quantum no. tells about the size of the orbital.
- **15.** (d) An element has the electronic configuration $1s^2, 2s^2 2p^6, 3s^2 3p^2, (Si)$. It's valency electrons are four.
- **16.** (c) The magnetic quantum number specifies orientation of orbitals.
- **17.** (c) If $l = 2, m \neq -3$. =(-e to +e).
- **18.** (d) If n = 3 then l = 0, 1, 2 but not 3.
- **20.** (c) Atomic number of *Cu* is $29 = (Ar)4s^1 3d^{10}$.
- **21.** (c) The shape of 2*p* orbital is dumb-bell.
- **22.** (a) When the value of n = 2, then l = 1 and the value of m = -1, 0, +1 *i.e.* 3 values.
- **23.** (c) $Cr_{24} = (Ar)3d^5 4s^1$ electronic configuration because half filled orbital are more stable than other orbitals.
- **24.** (d) *Kr* has zero valency because it contains 8 electrons in outermost shell.
- **25.** (c) 2 electron in the valence shell of calcium $Ca_{20} = (2, 8, 8, 2)$.
- **27.** (b) Value of l=1 means the orbital is p (dumbbell shape).
- **28.** (d) Cr has $[Ar]4s^13d^5$ electronic configuration because half filled orbital are more stable than other orbitals.
- 31. (d) The two electrons will have opposite spins.
- **33.** (c) If m = -3, then l = 3, for this value n must be 4.
- 34. (d) No. of electrons = $2n^2$ hence no. of orbital = $\frac{2n^2}{2} = n^2$.

- **35.** (d) No. of electrons = $2n^2$ hence no. of orbital = $\frac{2n^2}{2} = n^2$.
- **36.** (c) If n = 3 then l = 0 to n 1 & m = -l to +l

37. (b)
$$Na_{11} = 2, 8, 1 = 1s^2, 2s^2 2p^6, 3s^1$$

n = 3, l = 0, m = 0, s = +1/2

- **38.** (b) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **39.** (d) As a result of attraction, some energy is released. So at infinite distance from the nucleus energy of any electron will be maximum. For bringing electrons from ∞ to the orbital of any atom some work has to be done be electrons hence it bill loose its energy for doing that work.
- **40.** (c) This space is called nodal space where there is no possibility of oressene of electrons.
- **41.** (d) For *s* orbital l = 0 m = 0.
- **42.** (c) For M^{th} shell, n = 3; so maximum no. of electrons in M^{th} shell $= 2n^2 = 2 \times 3^2 = 18$.
- **43.** (c) m = -l to +l including zero.
- 44. (a) Number of radial nodes = (n l 1) For 3s: n = 3, l = 0 (Number of radial node = 2) For 2p: n = 2, l = 1 (Number of radial node = 0)
- **45.** (a) It consists only *s* orbital which is circular.
- **46.** (a) Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- 47. (b) If value of *l* is 2 then m = -2, -1, 0, +1, +2. m = -l to +l including zero. (5 values of magnetic quantum number)
- **48.** (c) *s*, *p*, *d* orbitals present in Fe

 $Fe_{26} = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^2 3d^6$

- **50.** (b) According to Aufbau rule.
- 51. (c) 3*d* subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1,4*s* electrons jumps into 3*d* subshell for more sability.

52. (b)
$$K_{19} = 1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^1$$

for $4s^1$ electrons.

$$n = 4, l = 0, m = 0$$
 and $s = +\frac{1}{2}$

- 54. (b) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1, 4s electrons jumps into 3dsubshell for more sability.
- **55.** (c) It has 3 orbitals p_x, p_y, p_z .
- **57.** (b) If l=2 then it must be *d* orbital which can have 10 electrons.
- **59.** (c) for *d* orbital l = 2.
- **60.** (c) m = -l to +l including zero.
- **61.** (d) When n = 3 shell, the orbitals are $n^2 = 3^2 = 9$. No. of electrons $= 2n^2$

Hence no. of orbital
$$=\frac{2n^2}{2}=n^2$$
.

62. (d) Configuration of $Ne = 1s^2 2s^2 2p^6$

$$F^{-} = 1s^{2} 2s^{2} 2p^{6}$$
$$Na^{+} = 1s^{2} 2s^{2} 2p^{6}$$
$$Mg^{++} = 1s^{2} 2s^{2} 2p^{6}$$

$$Cl^{-} = 1s^2 2s^2 2p^6 3s^2 3p^6$$
.

- **63.** (d) $Unh_{106} = [Rn]5f^{14}, 6d^5, 7s^1$
- **64.** (c) K^+ and Ca^{++} have the same electronic configuration $(1s^2, 2s^2 2p^6, 3s^2 3p^6)$
- **65.** (b) For *s*-orbital, l = 0.
- **66.** (d) $3s^1$ is valency electrons of *Na* for this $n = 3, l = 0, m = 0, s = \frac{+1}{2}$
- **67.** (c) $_7N = 1s^2, 2s^2 2p_x^1, 2p_y^1, 2p_z^1$. Hund's rule states that pairing of electrons in the orbitals of a subshell (orbitals of equal energy) starts when each of them is singly filled.
- **68.** (d) (4) and (5) belong to *d*-orbital which are of same energy.
- **69.** (c) Atomic no. 17 is of chlorine.
- **70.** (b) The *s*-orbital has spherical shape due to its non- directional nature.
- **71.** (a) According to the Aufbau's principle the new electron will enter in those orbital which have least energy. So here 4p-orbital has least energy then the others.
- **72.** (c) According to Aufbau's principle.
- **73.** (c) $1s^2 2s^2 2p^6, 3s^2 3p^6, 4s^2 3d^6 = 2, 8, 14, 2$.
- 74. (c) Ground state of $Cu^{29} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$ $Cu^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$.
- **76.** (c) No. of electrons in 3^{rd} shell = $2n^2 = 2(3)^2 = 18$
- **77.** (c) $F_9 = 1s^2 2s^2 2p^5$
- **78.** (c) When l = 3 then

m = -3, -2, -1, 0, +1, +2, +3. m = -l to +l including zero.

- **80.** (d) m = -1 is not possible for s orbital (l = 0).
- **84.** (a) Both 2*p* and 3*p*-orbitals have dumb-bell shape.
- **85.** (b) 3d subshell filled with 5 electrons (half-filled) is more stable than that filled with 4 electrons. 1, 4s electrons jumps into 3d subshell for more sability.
- **86.** (c) The shape of 2*p* orbital is dumb-bell.

87. (a)
$$_{25}Mn = [Ar] 3d^5 4s^2 = Mn^{2+} = [Ar] 3d^5 4s^0$$

- **89.** (c) For *p*-orbital, l = 1 means dumb-bell shape.
- **91.** (d) l=3 means f subshell maximum number of e^{-1} in f subshell = 14.
- 93. (b) As per Aufbau principle.
- **94.** (b) l=0 is s, l = 1 is p and l=2 is d and so on hence spd may be used in state of no..

95. (d) For
$$4d, n = 4, l = 2, m = -2, -1, 0, +1, +2, s = +\frac{1}{2}$$
.

- **96.** (d) *m* cannot be greater than l(=0,1).
- **97.** (a) For n = 1, l = 0.

99. (d)
$$Na_{11} = 1s^2 2s^2 p^6 3s^2$$

$$n = 3, l = 0, m = 0$$
 and $s = +\frac{1}{2}$

- 102. (d) According to Aufbau's rule.
- **105.** (d) $2p_x, 2p_y, 2p_z$ sets of orbital is degenerate.
- **106.** (a) Mg_{12} have $1s^2 2s^2 2p^6 3s^2$ electronic configuration

$$n = 3, l = 0, m = 0, s = -\frac{1}{2}$$
.

- **107.** (c) The principle quantum number n = 3. Then azimuthal quantum number l = 3 and number of orbitals $= n^2 = 3^2 = 9$. 3 and 9
- **108.** (d) $_{29}Cu = [Ar]3d^{10}4s^1, Cu^{2+} = [Ar]3d^9.4s^0$.

Ground state of
$$Cu^{29} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^1$$

 $Cu^{2+} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$.

- **110.** (d) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$ it shows electronic configuration of Iron.
- 111. (d) Orbitals are 4s, 3s, 3p and 3d. Out of these 3d has highest energy.
- **113.** (c) For the n = 2 energy level orbitals of all kinds are possible $2^n, 2^2 = 4$.
- **114.** (b) n = 2 than no. of orbitals $= n^2$, $2^2 = 4$
- **118.** (b) For both *A* & *B* electrons s = -1/2 & +1/2 respectively, n = 3, l = 0, m = 0

- 119. (a) According to Aufbau's rule.
- 120. (a) Possible number of subshells would be (6s, 5p, 4d).
- **121.** (d) For f orbital l = 3.
- **123.** (b) 4*d*-orbital have highest energy in given data.
- **125.** (d) If m = -3, l = 3 and n = 4.
- **127.** (b) $N_7^{14} = 1s^2 2s^2 2p_x^1 2p_y^1 2p_z^1$.
- **128.** (c) *m* can't be greater than *l*.
- **130.** (b) n = 1 and m = 1 not possible for *s*-orbitals.
- **131.** (a) $Fe_{26} = [Ar] 3d^6 4s^2$

 $Fe^{3+} = [Ar]3d^5 4s^0.$

- **132.** (c) Maximum number of electron = $2n^2$ (where n = 4) = $2 \times 4^2 = 32$.
- **133.** (d) When 2p orbital is completely filled then electron enter in the 3s. The capacity of 2p orbital containing e^- is 6. So $1s^2, 2s^2 2p^2 3s^1$ is a wrong electronic configuration the write is $1s^2 2s^2 2p^3$.
- **134.** (b) This electronic configuration is *Cr* (chromium element) in the ground state

$$= 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$$

- **137.** (c) No. of electron are same (18) in Cl^- and Ar.
- **138.** (c) For *s*-subshell l = 0 then should be m = 0.
- **139.** (c) 19^{th} electron of chromium is $4s^1$

 $n = 4, l = 0, m = 0, s = +\frac{1}{2}$

- **140.** (c) The value of *m* is *l* to l including zero so for *l* = 3, *m* would be –3, –2, –1, 0, +1, +2, +3.
- 141. (c) l=1 is for p orbital.
- **142.** (d) Magnetic quantum number of sodium $(3s^1)$ final electron is m = 0.
- **143.** (c) Generally azimuthal quantum number defines angular momentum.
- **146.** (d) m = (2l+1) for *d* orbital l = 2 $m = (2 \times 2 + 1) = 5$.
- **147.** (a) The atomic number of chlorine is 17 its configuration is $1s^2 2s^2 2p^6 3s^2 3p^5$
- **148.** (c) $n = l = m_1 = m_2$

3 2 1 0

This set (c) is not possible because spin quantum number values $=\pm\frac{1}{2}$.

149. (b) The ground state of neon is $1s^2 2s^2 2p^6$ on excitation an electron from 2p jumps to 3s orbital. The excited neon configuration is $1s^2 2s^2 2p^5 3s^1$.

- **152.** (a) s p d f g hl = 0 1 2 3 4 5Number of orbitals $= 5 \times 2 + 1 = 11$
- **153.** (a) It is the ground state configuration of chromium.
- **155.** (b) $n = 4 \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^6, 4d^{10}, 4f^{14}$

So l = (n-1) = 4 - 1 = 3 which is f orbit contain 7 orbital.

156. (d) 2p have contain maximum 6 electron out of which there are 3 are of + 1/2 spin and 3 are of - 1/2 spin

$$\begin{array}{|c|c|c|c|c|} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow & \uparrow \downarrow \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow & \uparrow \downarrow \\ +1/2 & -1/2 \end{array}$$

157. (a) For 4f orbital electron, n = 4

l =

$$s, p, a, f$$

 $m = +3, +2, +1, 0, -1, -2, -3$
 $s = +1/2$

- **158.** (b) $_{24}Cr \rightarrow 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$
 - (We know that for *p* the value of l = 1 and for *d*, l = 2)

For l = 1 total number of electron = 12

- For l = 2 total number of electron = 5.
- **159.** (c) Atomic number of potassium is 19 and hence electronic configuration will be $1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 4s^1$

Hence for $4s^1$ electron value of Quantum number are

Principal quantum number n = 4Azimuthal quantum number l = 0

Magnetic quantum number m = 0

Spin quantum number s = +1/2

- **160.** (d) According to Hund's rule electron first fill in unpaired form in vacant orbital then fill in paired form to stabilized the molecule by which $1s^2, 2s^2, 2p_x^2$ is not possible. According to Hund's rule. Because $2p_x, p_y, p_z$ have the same energy level so electron first fill in unpaired form not in paired form so it should be $1s^2, 2s^2, 2p_x^1, 2p_y^1$.
- 161. (c) It is governed by Aufbau principle.
- 162. (d) The electronic configuration of atomic number

 $24 = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^5, 4s^1$

163. (b) The maximum number of electron in any orbital is 2.

164. (c) According to pauli principle 2 electron does not have the same value of all four quantum

number. They have maximum same value are 3.

- **165.** (a) Number of orbitals $= n^2 = 4^2 = 16$.
- **166.** (d) We know from the Aufbau principle, that 2p orbital will be filled before 3s orbital. Therefore, the electronic configuration $1s^2$, $2s^2$, $2p^2$, $3s^1$ is not possible.
- 167. (d) Each orbital may have two electrons with opposite spin.
- 168. (d) Maximum no. of electrons in a subshell = 2(2l+1) for *f*-subshell, l = 3 so 14 electrons accommodated in *f*-subshell.
- 169. (b) Each orbital has atleast two electron.
- 170. (a) Nucleus of 20 protons atom having 20 electrons.
- **174.** (b) For m = 0, electron must be in *s*-orbital.
- 176. (c) In this type of electronic configuration the number of unpaired electrons are 3.

$$\frac{1}{1s} \quad \frac{1}{2s} \quad \frac{1}{2p} = 3$$

177. (a) Atomic number of Cu is 29 so number of unpaired electrons is 1

181. (c) $Be_4 = 1s^2, 2s^2 =$ (Ground state)

Number of unpaired electrons in the ground state of Beryllium atom is zero.

182. (b) Two unpaired electrons are present in

2 Unpaired electrons **184.** (c) $Cr_{24} = (Ar)3d^5 4s^1$ but $Cr_{24}^{3+} = (Ar)3d^3 4s^0$

185. (a)
$$Zn_{30} = [Ar] 3d^{10} 4s^2$$

$$Zn^{++} = [Ar] 3d^{10} 4s^0$$

186. (d) Mn^{+2} ion will have five (maximum) unpaired electrons

187. (c) Fe^{3+} ion will have five (maximum) unpaired electrons.

- **190.** (c) Due to full filled *d*-orbital Cl^- has spherical symmetry.
- 191. (b) Atomic number 14 leaving 2 unpaired electron $_{14}Si = 1s^2 2s^2 2p^6 3s^2 3p^2$

192. (a) Shell = K, L, $M = 1s^2 2s^2 2p^6 3s^2 3p^4$

Hence the number of s electron is 6 in that element.

193. (d) $C_6 = 1s^2, 2s^2 2p^2$ (Ground state)

 $=1s^2 2s^1 2P_x^1 2p_y^1 2p_z^1$ (Excited state)

In excited state no. of unpaired electron is 4.

194. (b) Max. no. of electrons in N-shell (n = 4)

$$=2n^2 = 2 \times 4^2 = 32$$

195. (d)
$$_{26}Fe = [Ar] 3d^6, 4s^2$$

$$Fe^{2+} = [Ar] 3d^6, 4s^0$$

Number of d-electrons = 6

$$_{17}Cl = [Ne]3s^2, 3p^5$$

 $Cl^{-} = [Ne] 3s^{2}, 3p^{6}$

Number of p-electrons = 6.

- **196.** (a) Electrons in the atom = 18 + 4 + 3 = 25 *i.e.* Z = 25.
- 197. (c) The atomic number of bromine is 35 and the electronic configuration of Br is $Br_{35} = 1s^2, 2s^2, 2p^6, 3s^2, 3p^6, 3d^{10}, 4s^2, 4p^5$

total electron present in *p*-orbitals of Br is -

$$2p^6 + 3p^6 + 4p^5 = 17.$$

198. (d) Fe^{2+} has $1s^2, 2s^2 2p^6, 3s^2 3p^6 3d^6$ configuration with 4 unpaired electron.

199. (b)
$$Fe^{2+}[Ar]3d^64s^0$$

 Fe^{2+} consist of maximum 4 unpaired electrons.

201. (a)
$$Fe^{3+}$$
 (z = 26)

Total no. of unpaired electron=5

202. (b)
$$Co_{27} = [Ar] 3d^7 4s^2$$

3 unpaired electron are present in cobalt

metal.

203. (b) According to Hund's rule, the pairing of electrons will not occur in any orbital of a subshell unit and unless, all the available of it have one electron each.

Electronic configuration of

 $_{7}N^{14} = 1 s^{2}, 2s^{2}, 2p_{x}^{1}2p_{y}^{1}2p_{z}^{1}$

Hence it has 3 unpaired electron in 2*p*-orbital.

- **204.** (c) 2*s* orbital have minimum energy and generally electron filling increases order of energy according to the Aufbau's principle.
- 205. (d) According to Pauli's exclusion principle no two electrons in the same atom can have all the set of four quantum numbers identical.
- **206.** (b) The second principal shell contains four orbitals *viz* 2s, $2p_x$, $2p_y$ and $2p_z$.
- 207. (b) Follow Hund's multiplicity rules.
- **208.** (c) According to the Aufbau's principle, electron will be first enters in those orbital which have least energy. So decreasing order of energy is 5p > 4d > 5s.
- **210.** (b) No two electrons in an atom can have identical set of all the four quantum numbers.
- **212.** (a) In particular shell, the energy of atomic orbital increases with the value of *l*.
- 214. (c) Aufbau principle explains the sequence of filling of orbitals in increasing order of energy.
- **215.** (a) According to Aufbau principle electron are filling increasing order of energy. Therefore the electronic configuration $1s^2 2s^2 2p^6$ obeys Aufbau principle.
- **216.** (d) Electronic configuration of the Cr_{24} is

$$\frac{|4s^{1}3d^{5} \text{ or}}{1 | 1 | 1 | 1 | 1} \boxed{1}$$

$$3d \qquad 4s$$

- **217.** (b) According to the Aufbau principle electron filling minimum to higher energy level.
- **219.** (b) According to Aufbau principle electron are filled in various atomic orbital in the increasing order of energy

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 4f < 5d < 6p < 7s.

| = 6

222. (b) We know that for *d*-electron l = 2.

- $\mu = \sqrt{l(l+1)} \frac{h}{2\pi}; \quad \mu = \sqrt{2(2+1)} \frac{h}{2\pi}$ $\mu = \sqrt{2(2+1)} \frac{h}{2\pi}; \quad \mu = \sqrt{6} \frac{h}{2\pi}.$
- **223.** (a) Number of nodal centre for 2s orbitals (n-1)=2-1=1.
- **224.** (d) Since *s*-orbital have l = 0

Angular momentum =
$$\sqrt{l(l+1)} \times \frac{h}{2}$$
 =

 $0 \times \frac{h}{2\pi} = 0$.

- **225.** (d) Azimuthal quantum number (l) = 3 shows the presence of f orbit, which contain seven orbitals and each orbital have 2 electrons. Hence $7 \times 2 = 14$ electrons.
- 227. (b) According to Aufbau principle.
- **228.** (a) Atomic number of deuterium = 1; ${}_{1}D^{2} \rightarrow 1s^{1}$

Critical Thinking Questions

- (a) F⁻ have the same number of electrons with the neon atom.
- (d) No change by doubling mass of electrons however by reducing mass of neutron to half total atomic mass becomes 6+3 instead of 6+6. Thus reduced by 25%.

3. (d)
$$\frac{e}{m}$$
 for (i) neutron $=\frac{0}{1}=0$
(ii) α - particle $=\frac{2}{4}=0.5$
(iii) Proton $=\frac{1}{1}=1$
(iv) electron $=\frac{1}{1/1837}=1837$.

(a) Metal is ${}_{56}M^{2+}(2,8,14)$ than n = A - Z

$$= 56 - 26 = 30$$

(d)
$$E = hv = h\frac{c}{\lambda}$$
 i.e. $E \propto \frac{1}{\lambda}$
$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{4000}{2000} = 2.$$

- (c) Rutherford discovered nucleus.
- (b) According to Bohr's model $\Delta E = E_1 E_3$

$$= 2.179 \times 10^{-11} - \frac{2.179 \times 10^{11}}{9}$$
$$= \frac{8}{9} \times 2.179 \times 10^{-11} = 1.91 \times 10^{-11} = 0.191 \times 10^{-10} erg$$

Since electron is going from n = 1 to n = 3 hence energy is absorbed.

- (d) Radius of nucleus $= 1.25 \times 10^{-13} \times A^{1/3} cm$
- 8.

4.

5.

6.

7.

 $= 1.25 \times 10^{-13} \times 64^{1/3} = 5 \times 10^{-13} cm$ Radius of atom = $1 \text{ Å} = 10^{-8} cm$. $\frac{\text{Volume of nucleus}}{\text{Volume of atom}} = \frac{(4/3)\pi (5 \times 10^{-13})^3}{(4/3)\pi (10^{-8})^3}$ $= 1.25 \times 10^{-13} .$ (a) Values of energy in the excited state

- 9. (a) Values of energy in the excited state $= -\frac{13.6}{n^2} eV = \frac{-13.6}{4} = -3.4 eV \text{ in } \text{ which}$ n = 2, 3, 4 etc.
- 10. (c) $E_{1\ He^+} = E_{1\ H} \times z^2$ -871.6×10⁻²⁰ = $E_{1H} \times 4$ $E_{1\ H} = -217.9 \times 10^{-20} J$
- 11. (a) 42g of N_3^- ions have $16 N_A$ valence electrons 4.2g of N_3^- ion have $= \frac{16 N_A}{42} \times 4.2 = 1.6 N_A$.
- **12.** (d) Ist excited state means n = 2 $r = r_0 \times 2^2 = 0.53 \times 4 = 2.12 \text{ Å}$
- 13. (d) Frequency $v = 12 \times 10^{14} s^{-1}$ and velocity of light $c = 3 \times 10^{10} cm s^{-1}$. We know that the wave

number
$$\overline{v} = \frac{v}{c} = \frac{12 \times 10^{14}}{3 \times 10^{10}} = 4 \times 10^4 \, cm^{-1}$$

 (c) The last line in any series is called series limit. Series limit for Balmer series is 3646 Å.

15. (b)
$$E = \frac{-13.6}{n^2} = \frac{-13.6}{4} = -3.4 \ eV$$

We know that energy required for excitation $\Delta E = E_2 - E_1 = -3.4 - (-13.6) = 10.2 \, eV$

Therefore energy required for excitation of electron per atom $= \frac{10.2}{6.02 \times 10^{23}} = 1.69 \times 10^{-23} J$

17. (a) The number of nodal plane are present in a p_x is one or no. of nodal place = l for p_x orbital l = 1

18. (b) In Balmer series of hydrogen atomic spectrum which electronic transition causes third line $O \rightarrow L$, $n_2 = 5 \rightarrow n_1 = 2$

20. (b)
$$\overline{v} = \frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

= $\frac{1}{\lambda} = R_H \left[\frac{1}{3^2} - \frac{1}{n_2^2} \right] = n_2 = 3$ for Paschen series.

21. (a)
$$E \propto \left[\frac{1}{n_2^2} - \frac{1}{n_1^2}\right]$$

23. (d) $\lambda = \frac{c}{v} = \frac{3 \times 10^8}{8 \times 10^{15}} = 3.75 \times 10^{-8}$
 $= 3.75 \times 10^{-8} \times 10^9 nm = 4 \times 10^1 nm$.

1.

2.

3.

4.

5.

6.

7.

Assertion & Reason

(d) The assertion is false but the reason is true exact position and exact momentum of an electron can never be determined as according to Hesenberg's uncertainity principle even with the help of electron microscope because when e^- beam of electron microscope strikes the target e^- of atom, the impact causes the change in velocity of e^- thus attempt to locate the e^- changes ultimately, the momentum & position of e^- .

$$\Delta x.\Delta p \ge \frac{h}{4\pi} \approx 0.57 \ ergs \ \sec/gm$$

- (d) Both assertion and reason are false. $2p_x$ and $2p_y$ orbitals are degenerate orbitals, i.e., they are of equal energy and hence no possibility of transition of electron.
- (a) We know that principal quantum number represent the main energy level or energy shell. Since each energy level is associated with a definite amount of energy, this quantum number determines to a large extent te energy of an electron. It also determines the average distance of an electron around the nucleus. Therefore both Assertion and Reason are true and the Reason is a correct explanation of the Assertion.
- (a) It is observed that a nucleus which is made up of even number of nucleons (No. of n & p) is more stable than nuclie which consist of odd number of nucleons. If number of neutron or proton is equal to some numbers *i.e.*, 2,8, 20, 50, 82 or 126 (which are called magic numbers), then these passes extra stability.
- (c) The assertion that the isobars are the atoms of different elements having same mass number but different atomic number, is correct but reason is false because atomic mass is sum of number of neutron and protons which should be same for isobars.
- (d) We know from the Pauli exclusion principle, that two electrons in the same atom can not have same value of all four quantum numbers. This means each electron in an atom has only one set of values for *n*,*l*,*m* and *s*. Therefore both the Assertion and Reason are false.
- (e) We know that the line in Balmer series of hydrogen spectrum the highest wavelenght or

lowest energy is between $n_1 = 2$ and $n_2 = 3$. And for Balmer series of hydrogen spectrum, the value of $n_1 = 2$ and $n_2 = 3,4,5$. Therefore the Assertion is false but the Reason is true. 13.

- 8. (d) We know that Absorption spectrum is produced when white light is passed through a substance and transmitted light is analysed by a spectrograph. The dark spaces corresponds to the light radiation absorbed by the substance. And emission spectrum is produced by analysing the radiant energy emitted by an excited substance by a spectrograph. Thus discontinuous spectra consisting of a series of sharp lines and separated by dark bands are obtained. Therefore both the Assertion and Reason are false.
- 9. (a) We know that a resonance hybrid or the actual molecule is always more stable than any of its canonical structures which is also called hypothetical or imaginary structures. This stability is due to delocalization of electrons and is measured in terms of resonance energy or delocalization energy, it is defined as the difference in internal energy of the resonance hybrid and the most stable canonical structure. Therefore both the Assertion and Reason are true and the Reason is a correct explantion of the Assertion.
- 10. (e) We know that cathode rays cast shadows of solid objects placed in their path. During experiment performed on these rays, fluorescene (flash of light) is observed in the region, outside the shadow. This shows that cathode rays travel in straight lines. We also known that cathode rays penetrate through a thin sheet of metals but are stopped by thick sheets. Therefore both Assertion and Reason are false.
- (b) We know that electrons are revolving around 11. the nucleus at high speed in circular paths. The centrifugal force (which arises due to rotation of electrons) acting outwards, balances the electrostatic force of attraction (which arises due to attraction between electrons and nucleus). This prevent the electron from falling into the nucleus. We also know that Rutherford's model of atom is comparable to the "solar system". The nucleeus represent the sun whereas revolving electrons represent the planets revolving around the sun. Thus revolving electron are also called planetary electrons. Therefore both Assertion and Reason are true but Reason is not a correct explanation of Assertion.
- 12. (c) Assertion is true but Reason is false. Threshold frequency is a minimum frequency required for the emission of electrons from the metal surface.

(a) Both assertion and reason are true and reason is the correct explanation of assertion.

Radius,
$$r = \frac{n^2 h^2}{4 \pi e^2 m Z} = \frac{n^2}{Z} \times 0.529 \text{ Å. } r_n$$
 also

increases indicating a greater separation between the orbit and the nucleus.

- 14. (d) Both assertion and Reason are false. Only sorbital is spherically symmetrical. Shape of different d orbitals is as below.
- **15.** (c) Assertion is true but reason is false. Spin angular momentum of the electron, a vector quantity, can have two orientations (represented by + and sign) relative to a chosen axis. These two orientation are distinguished by the spin quantum number m_s

equals to $+\frac{1}{2}$ or $-\frac{1}{2}$. These are called the two spin states of the electron and are normaly

represented by the two arrows \uparrow (spin up) and \downarrow (spin down) respectively.

- 16. (d) Both assertion and reason are false. Total number of orbitals associated with Principal quantum number n=3 is 9. One 3s orbital + three 3p orbital + five 3d orbitals. \therefore Therefore there are a total number of nine orbitals. Number of orbitals in a shell equals to n^2 .
- 17. (c) Assertion is true but reason is false. The order 1s < 2s = 2p < 3s = 3p = 3d < ... is true for the energy of an electron in a hydrogen atom and is solely determined by Principal quantum number. For multielectron system energy also depends on azimuthal quantum number. The stability of an electron in a multi electron atom is the net result of the attraction between the electron and the uncleus and the repulsion between the electron and the rest of the electron present. Energies of different subshell (azimuthal quantum number) present within the same principal shell are found to be in order of s .
- 18. (e) Assertion is false but reason is true. Splitting of the spectral lines in the presence of a magnetic field is known as Zeeman effect or in electric field it is known as stark effect. The splitting of spectral lines is due to different orientations which the orbitals can have in the presence of magnetic field.
- **19.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- (e) Assertion is false but reason is true. Atomic orbital is designated by n,l and m_l while state of an electron in an atom is specified by four quantum numbrs n,l,m_l and m_s.
- **21.** (b) Both assertion and reason are true but reason is not the correct explanation of assertion.

The difference between the energies of adjacent energy levels decreases as we move away from the nucleus. Thus in H atom

$$E_2 - E_1 > E_3 - E_2 > E_4 - E_3 \dots$$

- **22.** (d) Both assertion and reason are false. Cathode rays are stream of electrons. They are generated through gases at low pressure and high voltage.
- 23. (d) Both assertion and reason are false. In case of isoelectronic, i.e., ions, having the same number of electrons and different nuclear charge, the size decreases with increase in atomic number.

Ion	At. No.	No. of electrons	Ionic radii
Na^+	11	10	0.95Å
Mg^{2+}	12	10	0.65Å
Al^{3+}	13	10	0.50Å